Publications by authors named "David Knorr"

While CD40 agonism is an attractive approach for activating antigen-presenting cells and initiating antitumor responses, previous attempts have encountered limited clinical efficacy coupled with toxicity. We previously demonstrated that interactions between the antibody Fc domain and the inhibitory receptor FcγRIIB are critical for enhanced antitumor activity. Here, we present the results of a phase 1 study on intratumoral administration of an anti-CD40 agonistic antibody (2141-V11) Fc-engineered to enhance FcγRIIB binding.

View Article and Find Full Text PDF

Preclinical murine data indicate that fragment crystallizable (Fc)-dependent depletion of intratumoral regulatory T cells (Treg) is a major mechanism of action of anti-CTLA-4. However, the two main antibodies administered to patients (ipilimumab and tremelimumab) do not recapitulate these effects. Here, we investigate the underlying mechanisms responsible for the limited Treg depletion observed with these therapies.

View Article and Find Full Text PDF

While anti-CD47 antibodies hold promise for cancer immunotherapy, early-phase clinical trials have shown limited clinical benefit, suggesting that CD47 blockade alone might be insufficient for effective tumor control. Here, we investigate the contributions of the Fc domain of anti-CD47 antibodies required for optimal in vivo antitumor activity across multiple species-matched models, providing insights into the mechanisms behind the efficacy of this emerging class of therapeutic antibodies. Using a mouse model humanized for CD47, SIRPα, and FcγRs, we demonstrate that local administration of Fc-engineered anti-CD47 antibodies with enhanced binding to activating FcγRs promotes tumor infiltration of macrophages and antigen-specific T cells, while depleting regulatory T cells.

View Article and Find Full Text PDF

Despite recent advances in the treatment of acute myeloid leukemia (AML), there has been limited success in targeting surface antigens in AML, in part due to shared expression across malignant and normal cells. Here, high-density immunophenotyping of AML coupled with proteogenomics identified unique expression of a variety of antigens, including the RNA helicase U5 snRNP200, on the surface of AML cells but not on normal hematopoietic precursors and skewed Fc receptor distribution in the AML immune microenvironment. Cell membrane localization of U5 snRNP200 was linked to surface expression of the Fcγ receptor IIIA (FcγIIIA, also known as CD32A) and correlated with expression of interferon-regulated immune response genes.

View Article and Find Full Text PDF

CD40 is a central costimulatory receptor implicated in productive antitumor immune responses across multiple cancers, including bladder cancer. Despite strong preclinical rationale, systemic administration of therapeutic agonistic antibodies targeting the CD40 pathway has demonstrated dose-limiting toxicities with minimal clinical activity, emphasizing an important need for optimized CD40-targeted approaches, including rational combination therapy strategies. Here, we describe a role for the endogenous IL-15 pathway in contributing to the therapeutic activity of CD40 agonism in orthotopic bladder tumors, with upregulation of transpresented IL-15/IL-15Rα surface complexes, particularly by cross-presenting conventional type 1 DCs (Dendritic Cells), and associated enrichment of activated CD8 T cells.

View Article and Find Full Text PDF

While anti-CD47 antibodies hold promise for cancer immunotherapy, early phase clinical trials have shown limited signs of clinical benefit, suggesting that blockade of CD47 alone may not be sufficient for effective tumor control. Here, we investigate the contributions of the Fc domain of anti-CD47 antibodies required for optimal in vivo antitumor activity across multiple species-matched models, providing new insights into the mechanisms underlying the efficacy of this emerging class of therapeutic antibodies. Using a novel mouse model humanized for CD47, SIRPα and FcγRs, we demonstrate that local administration of an Fc-engineered anti-CD47 antibody with enhanced binding to activating FcγRs modulates myeloid and T-cell subsets in the tumor microenvironment, resulting in improved long-term systemic antitumor immunity and minimal on-target off-tumor toxicity.

View Article and Find Full Text PDF

CD40 is a central co-stimulatory receptor implicated in the development of productive anti-tumor immune responses across multiple cancers, including bladder cancer. Despite strong preclinical rationale, systemic administration of therapeutic agonistic antibodies targeting the CD40 pathway have demonstrated dose limiting toxicities with minimal clinical activity to date, emphasizing an important need for optimized CD40-targeted approaches, including rational combination therapy strategies. Here, we describe an important role for the endogenous IL-15 pathway in contributing to the therapeutic activity of CD40 agonism in orthotopic bladder tumors, with upregulation of trans-presented IL-15/IL-15Rα surface complexes, particularly by cross-presenting cDC1s, and associated enrichment of activated CD8 T cells within the bladder tumor microenvironment.

View Article and Find Full Text PDF

D2C7-immunotoxin (IT), a dual-specific IT targeting wild-type epidermal growth factor receptor (EGFR) and mutant EGFR variant III (EGFRvIII) proteins, demonstrates encouraging survival outcomes in a subset of patients with glioblastoma. We hypothesized that immunosuppression in glioblastoma limits D2C7-IT efficacy. To improve the response rate and reverse immunosuppression, we combined D2C7-IT tumor cell killing with αCD40 costimulation of antigen-presenting cells.

View Article and Find Full Text PDF

Despite pre-clinical murine data supporting T regulatory (Treg) cell depletion as a major mechanism by which anti-CTLA-4 antibodies function in vivo, the two main antibodies tested in patients (ipilimumab and tremelimumab) have failed to demonstrate similar effects. We report analogous findings in an immunocompetent murine model humanized for CTLA-4 and Fcy receptors (hCTLA-4/hFcyR mice), where both ipilimumab and tremelimumab fail to show appreciable Treg depletion. Immune profiling of the tumor microenvironment (TME) in both mice and human samples revealed upregulation of the inhibitory Fcy receptor, FcyRIIB, which limits the ability of the antibody Fc fragment of human anti-CTLA-4 antibodies to induce effective antibody dependent cellular cytotoxicty/phagocytosis (ADCC/ADCP).

View Article and Find Full Text PDF

Anti-programmed death-1 (anti-PD-1) immunotherapy reinvigorates CD8 T cell responses in patients with cancer but PD-1 is also expressed by other immune cells, including follicular helper CD4 T cells (Tfh) which are involved in germinal centre responses. Little is known, however, about the effects of anti-PD-1 immunotherapy on noncancer immune responses in humans. To investigate this question, we examined the impact of anti-PD-1 immunotherapy on the Tfh-B cell axis responding to unrelated viral antigens.

View Article and Find Full Text PDF

Central diabetes insipidus (CDI) is an uncommon complication of acute myeloid leukemia (AML). Patients present with polyuria either preceding or at the time of diagnosis of AML. We describe the case of a 36-year-old male who presented with a subacute onset of polyuria, polydipsia, nocturia, and fatigue.

View Article and Find Full Text PDF

Background: All trans retinoic acid (ATRA) has revolutionized the treatment and outcomes of patients with Acute Promyelocytic Leukemia (APL). Induction therapy with ATRA is associated with the rare but potentially fatal complication of differentiation syndrome. While the presentation of this syndrome is varied, myopericarditis as a manifestation of differentiation syndrome is often fatal and rarely reported in literature.

View Article and Find Full Text PDF

Unlabelled: Cellular therapies including allogeneic hematopoietic cell transplant (allo-HCT) and autologous hematopoietic cell transplant (auto-HCT) and chimeric antigen receptor (CAR) T-cell therapy render patients severely immunocompromised for extended periods after therapy, and data on responses to COVID-19 vaccines are limited. We analyzed anti-SARS-CoV-2 spike IgG Ab (spike Ab) titers and neutralizing Ab among 217 recipients of cellular treatments (allo-HCT, = 149; auto-HCT, = 61; CAR T-cell therapy, = 7). At 3 months after vaccination, 188 patients (87%) had positive spike Ab levels and 139 (77%) had positive neutralization activity compared with 100% for both in 54 concurrent healthy controls.

View Article and Find Full Text PDF

Unlabelled: Coronavirus disease-19 (COVID-19) vaccine response data for patients with hematologic malignancy, who carry high risk for severe COVID-19 illness, are incomplete. In a study of 551 hematologic malignancy patients with leukemia, lymphoma, and multiple myeloma, anti-SARS-CoV-2 spike IgG titers and neutralizing activity were measured at 1 and 3 months from initial vaccination. Compared with healthy controls, patients with hematologic malignancy had attenuated antibody titers at 1 and 3 months.

View Article and Find Full Text PDF

Although mutations in DNA are the best-studied source of neoantigens that determine response to immune checkpoint blockade, alterations in RNA splicing within cancer cells could similarly result in neoepitope production. However, the endogenous antigenicity and clinical potential of such splicing-derived epitopes have not been tested. Here, we demonstrate that pharmacologic modulation of splicing via specific drug classes generates bona fide neoantigens and elicits anti-tumor immunity, augmenting checkpoint immunotherapy.

View Article and Find Full Text PDF

Intravesical immunotherapy using Bacille Calmette-Guérin (BCG) attenuated bacteria delivered transurethrally to the bladder has been the standard of care for patients with high-risk non-muscle-invasive bladder cancer (NMIBC) for several decades. BCG therapy continues to be limited by high rates of disease recurrence and progression, and patients with BCG-unresponsive disease have few effective salvage therapy options besides radical cystectomy, highlighting a need for new therapies. We report that the immune-stimulatory receptor CD40 is highly expressed on dendritic cells (DCs) within the bladder tumor microenvironment of orthotopic bladder cancer mouse models, recapitulating CD40 expression by DCs found in human disease.

View Article and Find Full Text PDF

Fc glycosylation profoundly impacts the effector functions of antibodies and often dictates an antibody's pro- or anti-inflammatory activities. It is well established that core fucosylation of the Fc domain -glycans of an antibody significantly reduces its affinity for FcγRIIIa receptors and antibody-dependent cellular cytotoxicity (ADCC). Previous structural studies have suggested that the presence of a core fucose remarkably decreases the unique and favorable carbohydrate-carbohydrate interactions between the Fc and the receptor -glycans, leading to reduced affinity.

View Article and Find Full Text PDF

Although rare, spontaneous remission (SR) of acute myeloid leukemia (AML) has been reported in the literature, the underlying mechanisms driving remission remain unknown. However, it is most commonly associated with a preceding severe infection. We present a case of a 40-year-old man with no past medical history who presented to our hospital with severe left hip pain and fevers and was found to have AML.

View Article and Find Full Text PDF

Immunotherapy in the form of allogeneic stem cell transplantation (SCT) plays an instrumental role in the treatment of acute myeloid leukemia (AML), with non-transplant modalities of immunotherapy including checkpoint blockade now being actively explored. Here, we provide an overview of the graft versus leukemia (GVL) effect in AML as a window into understanding the prospects of AML immunotherapy. We explore the roles of various cell types in orchestrating anti-leukemic immunity, as well as those contributing to the unique immune suppressive state of myeloid diseases.

View Article and Find Full Text PDF

Hyperprogression (HP) is a recently defined clinical phenomenon in which patients treated with immunotherapy paradoxically exhibit rapid tumor growth. The mechanisms of hyperprogression remain ill-defined, although recent studies in this issue point to a possible role for Fc receptors in this process..

View Article and Find Full Text PDF

Immune stimulation has emerged as a promising approach to the treatment of neoplastic diseases. Currently approved therapeutics, such as anti-CTLA4 and anti-PD1, are primarily aimed at blocking inhibitory signaling by immune cells. An alternative and potentially synergistic approach would involve activation of immune pathways by agonism of stimulatory receptors, such as CD40.

View Article and Find Full Text PDF

B cell antihost antibody production plays a central role in chronic graft-versus-host disease (cGVHD). T follicular helper (TFH) cells drive B cell responses and are implicated in this process. Given differences in cGVHD incidence between umbilical cord blood (UCB) and adult donor transplant recipients, we evaluated TFH cell reconstitution kinetics to define graft source differences and their potential pathogenic role in cGVHD.

View Article and Find Full Text PDF

Natural killer (NK) cells recognize deranged cells that display stress receptors or loss of major histocompatibility complex (MHC) class I. During development, NK cells become "licensed" only after they encounter cognate human leukocyte antigen (HLA) class I, leading to the acquisition of effector function. NK cells can be exploited for cancer therapy in several ways.

View Article and Find Full Text PDF