Nucleic acid detection is an important part of our bio-detection arsenal, with the COVID-19 pandemic clearly demonstrating the importance to healthcare of rapid and efficient detection of specific pathogenic sequences. As part of the drive to establish new DNA detection methodologies and signal read-outs, here we show how linear dichroism (LD) spectroscopy can be used to produce a rapid and modular detection system for detecting quantities of DNA from both bacterial and viral pathogens. The LD sensing method exploits changes in fluid alignment of bionanoparticles (bacteriophage M13) engineered with DNA stands covalently attached to their surfaces, with the read-out signal induced by the formation of complementary duplexes between DNA targets and two M13 bionanoparticles.
View Article and Find Full Text PDFThe phloem limited bacterium 'Candidatus Liberibacter solanacearum' (Lso) is associated with disease in Solanaceous and Apiaceous crops. This bacterium has previously been found in the UK in Trioza anthrisci, but its impact on UK crops is unknown. Psyllid and Lso diversity and distribution among fields across the major carrot growing areas of Scotland were assessed using real-time PCR and DNA barcoding techniques.
View Article and Find Full Text PDFThe development and management of pressure ulcers (PUs) among hospital and nursing home patients is one of the greatest preventable challenges to healthcare worldwide. For over 50 years, pressure mapping and subjective comfort has been the primary indicators for mattress selection. Our research demonstrates that mattress/patient interface pressure and relative blood/oxygen perfusion do not inversely correlate and pressure is not a meaningful, real-time indicator of tissue ischemia and risk of pressure ulcer development.
View Article and Find Full Text PDFPhytoplasma infections are regularly reported worldwide, and concerns about their threats on agricultural production, especially in relation to global climate change, are increasing. Sensitive and reliable detection methods are important to ensure that propagation material is free of phytoplasma infection and for epidemiological studies that may provide information to limit the extent of phytoplasma diseases and to prevent large-scale crop losses. The detection method described here uses LNA chemistry in real-time PCR.
View Article and Find Full Text PDF