DNA methylation is an epigenetic mechanism critical for tissue development and cell specification. Mammalian brains consist of many different types of cells with assumedly distinct DNA methylation profiles, and thus some genomic loci may demonstrate bipolar DNA methylation pattern, i.e.
View Article and Find Full Text PDFLeptomeningeal anastomoses play a critical role in regulating vascular re-perfusion following obstruction, however, the mechanisms regulating their development remains under investingation. Our current findings indicate that EphA4 receptor is a novel negative regulator of collaterogenesis. We demonstrate that EphA4 is highly expressed on pial arteriole collaterals at post-natal day (P) 1 and 7, then significantly reduced by P21.
View Article and Find Full Text PDFAdv Bioinformatics
January 2016
The emerging genome-wide hairpin bisulfite sequencing (hairpin-BS-Seq) technique enables the determination of the methylation pattern for DNA double strands simultaneously. Compared with traditional bisulfite sequencing (BS-Seq) techniques, hairpin-BS-Seq can determine methylation fidelity and increase mapping efficiency. However, no computational tool has been designed for the analysis of hairpin-BS-Seq data yet.
View Article and Find Full Text PDF