Intratumoral (IT) STING activation results in tumor regression in preclinical models, yet factors dictating the balance between innate and adaptive anti-tumor immunity are unclear. Here, clinical candidate STING agonist ADU-S100 (S100) is used in an IT dosing regimen optimized for adaptive immunity to uncover requirements for a T cell-driven response compatible with checkpoint inhibitors (CPIs). In contrast to high-dose tumor ablative regimens that result in systemic S100 distribution, low-dose immunogenic regimens induce local activation of tumor-specific CD8 effector T cells that are responsible for durable anti-tumor immunity and can be enhanced with CPIs.
View Article and Find Full Text PDFThere are a limited number of adjuvants that elicit effective cell-based immunity required for protection against intracellular bacterial pathogens. Here, we report that STING-activating cyclic dinucleotides (CDNs) formulated in a protein subunit vaccine elicit long-lasting protective immunity to Mycobacterium tuberculosis in the mouse model. Subcutaneous administration of this vaccine provides equivalent protection to that of the live attenuated vaccine strain Bacille Calmette-Guérin (BCG).
View Article and Find Full Text PDFStimulator of interferon genes (STING) signaling induces IFNβ production by intratumoral dendritic cells (DC), driving T-cell priming and recruitment into the tumor microenvironment (TME). We examined to what extent preexisting antigen-specific tolerance influenced the efficacy of delivery of a potent STING-activating cyclic dinucleotide (CDN), ADU S-100, against established HER-2 breast tumors. ADU S-100 induced HER-2-specific CD8 T-cell priming and durable tumor clearance in 100% of nontolerant parental FVB/N mice.
View Article and Find Full Text PDFCytotoxic therapies prime adaptive immune responses to cancer by stimulating the release of tumor-associated antigens. However, the tumor microenvironment into which these antigens are released is typically immunosuppressed, blunting the ability to initiate immune responses. Recently, activation of the DNA sensor molecule STING by cyclic dinucleotides was shown to stimulate infection-related inflammatory pathways in tumors.
View Article and Find Full Text PDFStimulator of interferon genes (STING) is a cytosolic receptor that senses both exogenous and endogenous cytosolic cyclic dinucleotides (CDNs), activating TBK1/IRF3 (interferon regulatory factor 3), NF-κB (nuclear factor κB), and STAT6 (signal transducer and activator of transcription 6) signaling pathways to induce robust type I interferon and proinflammatory cytokine responses. CDN ligands were formulated with granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing cellular cancer vaccines--termed STINGVAX--that demonstrated potent in vivo antitumor efficacy in multiple therapeutic models of established cancer. We found that rationally designed synthetic CDN derivative molecules, including one with an Rp,Rp dithio diastereomer and noncanonical c[A(2',5')pA(3',5')p] phosphate bridge structure, enhanced antitumor efficacy of STINGVAX in multiple aggressive therapeutic models of established cancer in mice.
View Article and Find Full Text PDFA principal barrier to the development of effective vaccines is the availability of adjuvants and formulations that can elicit both effector and long-lived memory CD4 and CD8 T cells. Cellular immunity is the presumptive immune correlate of protection against intracellular pathogens: a group composed of bacteria, viruses and protozoans that is responsible for a staggering level of morbidity and mortality on a global scale. T-cell immunity is also correlated with clinical benefit in cancer, and the development of therapeutic strategies to harness the immune system to treat diverse malignancies is currently undergoing a renaissance.
View Article and Find Full Text PDFPurpose: HER-2 is in the EGF tyrosine kinase receptor family, overexpressed by many human cancers and minimally expressed by normal adult tissues. HER-2 expression in human cancers is correlated with reduced survival, increased metastasis, reduced apoptosis and increased proliferation. Herceptin is a humanised mouse antibody that targets and inactivates HER-2.
View Article and Find Full Text PDFThe major neonicotinoid insecticide imidacloprid (IMI) is used worldwide for crop protection and pest control on pets. IMI is extensively metabolized, oxidatively by cytochromes P450 and via aerobic nitroreduction by the molybdo-flavoenzyme aldehyde oxidase (AOX). Rabbit liver AOX is capable of reducing IMI to both its nitrosoguanidine (IMI-NO) and aminoguanidine (IMI-NH2) derivatives; however, when IMI-NO is used as a substrate, less than stoichiometric amounts of IMI-NH2 are detected while IMI-NO is completely consumed.
View Article and Find Full Text PDFThe nitroguanidine or nitromethylene moiety of the newest major class of insecticides, the neonicotinoids, is important for potency at insect nicotinic receptors and selectivity relative to mammalian receptors. Aldehyde oxidase (AOX) was recently identified as the imidacloprid nitroreductase of mammalian liver, producing both nitrosoguanidine and aminoguanidine metabolites. The present study considers the ability of AOX, partially purified from rabbit liver, to reduce five commercial nitroguanidine (i.
View Article and Find Full Text PDFFour neonicotinoid nitroguanidine insecticides (imidacloprid, thiamethoxam, clothianidin, and dinotefuran) acting as nicotinic agonists account for 10-15% of worldwide insecticide sales. General methods are needed for synthesis of their guanidine and aminoguanidine metabolites so they may be used as analytical standards and for evaluation of nicotinic receptor potency. The guanidines are obtained by treating the parent nitroguanidines with Fe powder in aqueous C2H5OH containing NH4Cl and isolated by silica chromatography.
View Article and Find Full Text PDFChem Res Toxicol
February 2005
Imidacloprid (IMI), the prototypical neonicotinoid insecticide, is used worldwide for crop protection and flea control on pets. It is both oxidatively metabolized by cytochrome P450 enzymes and reduced at the nitroguanidine moiety by a previously unidentified cytosolic "neonicotinoid nitroreductase", the subject of this investigation. Two major metabolites are detected on incubation of IMI with rabbit liver cytosol: the nitrosoguanidine (IMI-NO) and the aminoguanidine (IMI-NH2).
View Article and Find Full Text PDF6'-Methylpyrido[3,4-b]norhomotropane [synthesis as the racemate reported here] is more potent at the alpha4beta2 nicotinic receptor than any previous bridged nicotinoid. The two nitrogens and 6'-methyl substituent are superimposable on the two nitrogens and 6-chloro substituent of epibatidine, with the best fit on comparing the chair conformer of the (1R)-pyridonorhomotropane with natural (1R)-epibatidine. In this pharmacophore model, the 6'-methyl substituent may be equivalent to the acetyl methyl of acetylcholine.
View Article and Find Full Text PDF