Genetic parts and hosts can be sourced from nature to realize new functions for synthetic biology or to improve performance in a particular application environment. Here, we proceed from the discovery and characterization of new parts to stable expression in new hosts with a particular focus on achieving sustained chitinase activity. Chitinase is a key enzyme for various industrial applications that require the breakdown of chitin, the second most abundant biopolymer on the earth.
View Article and Find Full Text PDFCommon treatment for venous leg wounds includes topical wound dressings with compression. At each dressing change, wounds are debrided and washed; however, the effect of the washing procedure on the wound microbiome has not been studied. We hypothesized that wound washing may alter the wound microbiome.
View Article and Find Full Text PDFBackground: Skin, the largest organ of the human body by weight, hosts a diversity of microorganisms that can influence health. The microbial residents of the skin are now appreciated for their roles in host immune interactions, wound healing, colonization resistance, and various skin disorders. Still, much remains to be discovered in terms of the host pathways influenced by skin microorganisms, as well as the higher-level skin properties impacted through these microbe-host interactions.
View Article and Find Full Text PDFBackground: The skin micro-environment varies across the body, but all sites are host to microorganisms that can impact skin health. Some of these organisms are true commensals which colonize a unique niche on the skin, while open exposure of the skin to the environment also results in the transient presence of diverse microbes with unknown influences on skin health. Culture-based studies of skin microbiota suggest that skin microbes can affect skin properties, immune responses, pathogen growth, and wound healing.
View Article and Find Full Text PDFEcological stoichiometry (ES) uses organism-specific elemental content to explain differences in species life histories, species interactions, community organization, environmental constraints and even ecosystem function. Although ES has been successfully applied to a range of different organisms, most emphasis on microbial ecological stoichiometry focuses on lake, ocean, and soil communities. With the recent advances in human microbiome research, however, large amounts of data are being generated that describe differences in community composition across body sites and individuals.
View Article and Find Full Text PDFMany biotechnology capabilities are limited by stringent storage needs of reagents, largely prohibiting use outside of specialized laboratories. Focusing on a large class of protein-based biotechnology applications, we address this issue by developing a method for preserving cell-free protein expression systems for months above room temperature. Our approach realizes unprecedented long-term stability at elevated temperatures by leveraging the sugar alcohol trehalose, a simple, low-cost, open-air drying step, and strategic separation of reaction components during drying.
View Article and Find Full Text PDFCurr Opin Biotechnol
June 2017
The fields of biosensing and bioremediation leverage the phenomenal array of sensing and metabolic capabilities offered by natural microbes. Synthetic biology provides tools for transforming these fields through complex integration of natural and novel biological components to achieve sophisticated sensing, regulation, and metabolic function. However, the majority of synthetic biology efforts are conducted in living cells, and concerns over releasing genetically modified organisms constitute a key barrier to environmental applications.
View Article and Find Full Text PDFThe theory of invasions and invasion speeds has traditionally been studied in macroscopic systems. Surprisingly, microbial invasions have received less attention. Although microbes share many of the features associated with competition between larger-bodied organisms, they also exhibit distinctive behaviors that require new mathematical treatments to fully understand invasions in microbial systems.
View Article and Find Full Text PDFIt is generally assumed that antibiotics can promote horizontal gene transfer. However, because of a variety of confounding factors that complicate the interpretation of previous studies, the mechanisms by which antibiotics modulate horizontal gene transfer remain poorly understood. In particular, it is unclear whether antibiotics directly regulate the efficiency of horizontal gene transfer, serve as a selection force to modulate population dynamics after such gene transfer has occurred, or both.
View Article and Find Full Text PDFCell-free systems offer a simplified and flexible context that enables important biological reactions while removing complicating factors such as fitness, division, and mutation that are associated with living cells. However, cell-free expression in unconfined spaces is missing important elements of expression in living cells. In particular, the small volume of living cells can give rise to significant stochastic effects, which are negligible in bulk cell-free reactions.
View Article and Find Full Text PDFSynthetic biology offers great promise to a variety of applications through the forward engineering of biological function. Most efforts in this field have focused on employing living cells, yet cell-free approaches offer simpler and more flexible contexts. Here, we evaluate cell-free regulatory systems based on T7 promoter-driven expression by characterizing variants of TetR and LacI repressible T7 promoters in a cell-free context and examining sequence elements that determine expression efficiency.
View Article and Find Full Text PDFCells offer natural examples of highly efficient networks of nanomachines. Accordingly, both intracellular and intercellular communication mechanisms in nature are looked to as a source of inspiration and instruction for engineered nanocommunication. Harnessing biological functionality in this manner requires an interdisciplinary approach that integrates systems biology, synthetic biology, and nanofabrication.
View Article and Find Full Text PDFNoise biology focuses on the sources, processing, and biological consequences of the inherent stochastic fluctuations in molecular transitions or interactions that control cellular behavior. These fluctuations are especially pronounced in small systems where the magnitudes of the fluctuations approach or exceed the mean value of the molecular population. Noise biology is an essential component of nanomedicine where the communication of information is across a boundary that separates small synthetic and biological systems that are bound by their size to reside in environments of large fluctuations.
View Article and Find Full Text PDFRecent years have seen the emergence of synthetic biology, which encompasses the engineering of living organisms as well as the implementation of biological behavior in non-living substrates. Many of these engineered systems have harnessed the diverse toolkit of proteins, genes, and cellular processes that nature offers. While these efforts have been fruitful, they have also illustrated the difficulty associated with programming highly complex functions by tapping into cellular processes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2007
Microbial consortia form when multiple species colocalize and communally generate a function that none is capable of alone. Consortia abound in nature, and their cooperative metabolic activities influence everything from biodiversity in the global food chain to human weight gain. Here, we present an engineered consortium in which the microbial members communicate with each other and exhibit a "consensus" gene expression response.
View Article and Find Full Text PDFSynthetic biologists engineer complex artificial biological systems to investigate natural biological phenomena and for a variety of applications. We outline the basic features of synthetic biology as a new engineering discipline, covering examples from the latest literature and reflecting on the features that make it unique among all other existing engineering fields. We discuss methods for designing and constructing engineered cells with novel functions in a framework of an abstract hierarchy of biological devices, modules, cells, and multicellular systems.
View Article and Find Full Text PDF