Publications by authors named "David K K Leung"

A non-target variable Data Independent Acquisition (vDIA) workflow based on accurate mass measurements using a Q Exactive OrbiTrap is presented for the first time for equine doping control testing. The vDIA workflow uses a combination of MS1 events (1 to 2) and multiple vDIA events to cover the analytes of interest. The workflow basically captures a digital image of a sample allowing all relevant MS1 and MS2 data to be recorded.

View Article and Find Full Text PDF

The detection of boldenone, nandrolone, 5(10)-estrene-3β,17α-diol, and 4-estrene-3,17-dione in a urine sample collected from a gelding having been treated with testosterone (500 mg 'Testosterone Suspension 100', single dose, injected intramuscularly) in 2009 led the authors' laboratory to suspect that these 'testicular' steroids could be minor metabolites of testosterone in geldings. Administration trials on six castrated horses with Testosterone Suspension 100 confirmed that low levels of boldenone, nandrolone, 5(10)-estrene-3β,17α-diol, and 4-estrene-3,17-dione could indeed be detected and confirmed in the early post-administration urine samples from all six geldings. Although boldenone has been reported to be present in urine after testosterone administration, there has been no direct evidence reported that boldenone, nandrolone, 5(10)-estrene-3β,17α-diol, and 4-estrene-3,17-dione are metabolites of testosterone in geldings.

View Article and Find Full Text PDF

Anabolic steroids are banned substances in equine sports. Gas chromatography-mass spectrometry (GC-MS) has been the traditional technique for doping control analysis of anabolic steroids in biological samples. Although liquid chromatography-mass spectrometry (LC/MS) has become an important technique in doping control, the detection of saturated hydroxysteroids by LC-MS remains a problem due to their low ionization efficiency under electrospray.

View Article and Find Full Text PDF

The use of anabolic androgenic steroids (AAS) is prohibited in both human and equine sports. The conventional approach in doping control testing for AAS (as well as other prohibited substances) is accomplished by the direct detection of target AAS or their characteristic metabolites in biological samples using hyphenated techniques such as gas chromatography or liquid chromatography coupled with mass spectrometry. Such an approach, however, falls short when dealing with unknown designer steroids where reference materials and their pharmacokinetics are not available.

View Article and Find Full Text PDF

The successful use of homogenized horse liver for the generation of phase I in vitro metabolites has been previously reported by the authors' laboratory. Prior to the use of homogenized liver, the authors' laboratory had been using mainly horse liver microsomes for carrying out equine in vitro metabolism studies. Homogenized horse liver has shown significant advantages over liver microsomes for in vitro metabolism studies as the procedures are much quicker and have higher capability for generating more in vitro metabolites.

View Article and Find Full Text PDF

The positive findings of norbolethone in 2002 and tetrahydrogestrinone in 2003 in human athlete samples confirmed that designer steroids were indeed being abused in human sports. In 2005, an addition to the family of designer steroids called 'Madol' [also known as desoxy-methyltestosterone (DMT)] was seized by government officials at the US-Canadian border. Two years later, a positive finding of DMT was reported in a mixed martial arts athlete's sample.

View Article and Find Full Text PDF
Article Synopsis
  • Testosterone is primarily produced in the testes and is found in trace amounts in geldings due to adrenal secretion; the International Federation of Horseracing Authorities established a urine threshold of 20 ng/mL for preventing testosterone misuse in 1996.
  • Recent testing methods in blood have led to the development of a new liquid chromatography-mass spectrometry method to measure low levels of free testosterone in gelding plasma, establishing a rounded threshold of 100 pg/mL.
  • The effectiveness of this new plasma threshold was confirmed through studies, showing similar detection times in plasma and urine, and it was officially adopted by the IFHA in October 2013.
View Article and Find Full Text PDF

Gas chromatography-mass spectrometry (GC-MS) analysis after heptafluorobutyric anhydride (HFBA) derivatization was one of the published methods used for the quantification of ephedrine (EP) and pseudoephedrine (PE) in urine. This method allows the clear separation of the derivatized diastereoisomers on a methyl-silicone-based column. Recently the authors came across a human urine sample with apparently high levels (µg/ml) of EP and PE upon initial screening.

View Article and Find Full Text PDF

Liquid chromatography/mass spectrometry (LC/MS) has been successfully applied to the detection of anabolic steroids in biological samples. However, the sensitive detection of saturated hydroxysteroids, such as androstanediols, by electrospray ionisation (ESI) is difficult because of their poor ability to ionise. In view of this, chemical derivatisation has been used to enhance the detection sensitivity of hydroxysteroids by LC/MS.

View Article and Find Full Text PDF

A rapid liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed for the simultaneous screening of 19 drugs of different classes in equine plasma using automated on-line solid-phase extraction (SPE) coupled with a triple quadrupole mass spectrometer. Plasma samples were first protein precipitated using acetonitrile. After centrifugation, the supernatant was directly injected into the on-line SPE system and analysed by a triple quadrupole LC-MS-MS in positive electrospray ionisation (+ESI) mode with selected reaction monitoring (SRM) scan function.

View Article and Find Full Text PDF

Currently there are two common radioimmunoassay-based methods for the detection of equine cryptorchidism; one measures testosterone concentrations in peripheral blood samples taken before and after an intravenous injection of human chorionic gonadotrophin (hCG) and the other measures plasma estrone sulfate. However, each of these invasive methods has its own shortfalls and neither gives unequivocal results. In this article a highly reliable gas chromatography/mass spectrometry (GC/MS) method is described based on the analysis of urine samples for the identification of cryptorchidism in horses, some as young as 2 years old.

View Article and Find Full Text PDF

In September 2005, our laboratory detected the presence of 4-androstene-3,17-dione and androsterone in a standard steroid screen of a post-race gelding urine sample received from an overseas authority. All other urine samples from the same batch tested negative. Subsequent gas chromatography/mass spectrometry (GC/MS) confirmatory analyses, however, repeatedly failed to detect any amount of 4-androstene-3,17-dione and androsterone in the suspicious sample.

View Article and Find Full Text PDF

Quantitative determination, particularly for threshold substances in biological samples, is much more demanding than qualitative identification. A proper assessment of any quantitative determination is the measurement uncertainty (MU) associated with the determined value. The International Standard ISO/IEC 17025, "General requirements for the competence of testing and calibration laboratories", has more prescriptive requirements on the MU than its superseded document, ISO/IEC Guide 25.

View Article and Find Full Text PDF

Mesterolone (1alpha-methyl-5alpha-androstan-17beta-ol-3-one) is a synthetic anabolic androgenic steroid (AAS) with reported abuses in human sports. As for other AAS, mesterolone is also a potential doping agent in equine sports. Metabolic studies on mesterolone have been reported for humans, whereas little is known about its metabolic fate in horses.

View Article and Find Full Text PDF

This paper describes a high throughput LC-MS-MS method for the screening of 75 basic drugs in equine plasma at sub-ppb levels. The test scope covers diversified classes of drugs including some alpha- and beta-blockers, alpha- and beta-agonists, antihypotensives, antihypertensives, analgesics, antiarrhythmics, antidepressants, antidiabetics, antipsychotics, antiulcers, anxiolytics, bronchodilators, CNS stimulants, decongestants, sedatives, tranquilizers and vasodilators. A plasma sample was first deproteinated by addition of trichloroacetic acid.

View Article and Find Full Text PDF

This paper reports two highly efficient liquid chromatography-mass spectrometry (LC-MS) methods for the screening of anabolic steroids, corticosteroids, and acidic drugs for the purpose of doping control in equine sports. Sample extraction was performed using a mixed-mode C8-SCX solid-phase extraction (SPE) cartridge. The first eluted fraction (acidic/neutral fraction) was base-washed and the resulting organic extract was used for the screening of anabolic steroids and corticosteroids by LC-MS using multiple reaction monitoring (MRM) in the positive electrospray ionisation (ESI) mode.

View Article and Find Full Text PDF

This paper describes two high-throughput liquid chromatography-tandem mass spectrometry (LC-MS-MS) methods for the screening of two important classes of drugs in equine sports, namely corticosteroids and basic drugs, at low ppb levels in horse urine. The method utilized a high efficiency reversed-phase LC column (3.3 cm L x 2.

View Article and Find Full Text PDF

Anabolic steroids have the capability of improving athletic performance and are banned substances in the Olympic games as well as in horseracing and equestrian competitions. The control of their abuse in racehorses is traditionally performed by detecting the presence of anabolic steroids and/or their metabolite(s) in urine samples using gas chromatography-mass spectrometry (GC-MS). However, this approach usually requires tedious sample processing and chemical derivatisation steps and could be very insensitive in detecting certain steroids.

View Article and Find Full Text PDF