J Air Waste Manag Assoc
January 2025
The R-LINE model, which was released in 2013 as a stand-alone model for roadway-type applications and was based on a set of newly developed dispersion curves, exhibited favorable model performance in a limited set of evaluations (Heist et. al, 2013, Snyder et al. 2013, Venkatram et al.
View Article and Find Full Text PDFCommunities located in near-road environments experience elevated levels of traffic-related air pollution. Near-road air pollution is a major public health concern, and an environmental justice issue. Roadside green infrastructure such as trees, hedges, and bushes may help reduce pollution levels through enhanced deposition and mixing.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
January 2024
This paper focuses on the impact of solid barriers located upwind of a highway in reducing vehicle related concentrations that occur downwind of the roadway, compared to a highway without barriers. Measurements made in the United States Environmental Protection Agency's meteorological wind tunnel show that the mitigating impact of an upwind barrier is comparable to that of a downwind barrier. Upwind barriers lead to reductions in pollution concentrations by drawing emissions in from the highway toward the barrier.
View Article and Find Full Text PDFNew results are presented from wind tunnel studies performed at the United States Environmental Protection Agency (U.S. EPA), which include cases with solid roadside barriers of varying heights and cases with varying distances between the line source (roadway) and a 6-m-tall barrier.
View Article and Find Full Text PDFThis paper presents an analysis of data from a wind tunnel study conducted to examine the dispersion of emissions at the edges of near-road noise barriers. The study is motivated by the concern that a barrier positioned downwind of a roadway may guide highly polluted plumes along the barrier leading to heightened concentrations as the plume spills around and downwind of the barrier end. The wind tunnel database consists of measurements of dispersion around a simulated roadway segment with various noise barrier configurations.
View Article and Find Full Text PDFThis paper presents an analysis of data from a wind tunnel (Heist et al., 2009) conducted to study dispersion of emissions from three depressed roadway configurations; a 6 m deep depressed roadway with vertical sidewalls, a 6 m deep depressed roadway with 30° sloping sidewalls, and a 9 m deep depressed roadway with vertical sidewalls. The width of the road at the bottom of the depression is 36 m for all cases.
View Article and Find Full Text PDFThis article is the second in a two-paper series presenting results from wind tunnel and computational fluid dynamics (CFD) simulations of flow and dispersion in an idealized model urban neighborhood. Pollutant dispersion results are presented and discussed for a model neighborhood that was characterized by regular city blocks of three-story row houses with a single 12-story tower located at the downwind edge of one of these blocks. The tower had three significant effects on pollutant dispersion in the surrounding street canyons: drawing the plume laterally towards the tower, greatly enhancing the vertical dispersion of the plume in the wake of the tower, and significantly decreasing the residence time of pollutants in the wake of the tower.
View Article and Find Full Text PDFWind tunnel experiments were performed to examine the effect of a tall tower on the flow around an otherwise uniform array of buildings. Additionally, preliminary CFD simulations were run to visualize the flow with more resolution. The model used in both the wind tunnel and CFD studies was designed to simulate an area of Brooklyn, NY, USA, where blocks of residential row houses form a neighborhood bordering a major urban highway.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
December 2002
In siting a monitor to measure compliance with U.S. National Ambient Air Quality Standards (NAAQS) for particulate matter (PM), there is a need to characterize variations in PM concentration within a neighborhood-scale region to achieve monitor siting objectives.
View Article and Find Full Text PDF