Publications by authors named "David K Crockett"

Motivation: Accurate determination of single-nucleotide polymorphisms (SNPs) from next-generation sequencing data is a significant challenge facing bioinformatics researchers. Most current methods use mechanistic models that assume nucleotides aligning to a given reference position are sampled from a binomial distribution. While such methods are sensitive, they are often unable to discriminate errors resulting from misaligned reads, sequencing errors or platform artifacts from true variants.

View Article and Find Full Text PDF

The BTD gene codes for production of biotinidase, the enzyme responsible for helping the body reuse and recycle the biotin found in foods. Biotinidase deficiency is an autosomal recessively inherited disorder resulting in the inability to recycle the vitamin biotin and affects approximately 1 in 60,000 newborns. If untreated, the depletion of intracellular biotin leads to impaired activities of the biotin-dependent carboxylases and can result in cutaneous and neurological abnormalities in individuals with the disorder.

View Article and Find Full Text PDF

Controlled ovarian hyperstimulation is performed to assist with generation of multiple mature oocytes for use in in vitro fertilization (IVF). The goal of our study was to evaluate differences in protein and steroid profiles in ovarian follicular fluid (hFF) samples obtained during oocyte retrieval from women undergoing IVF treatment and to identify physiological pathways associated with the proteins. The hFF samples were depleted of abundant proteins, fractionated by ultrafiltration, digested, and analyzed by nano-LC-QTOF.

View Article and Find Full Text PDF

Accurate interpretation of gene testing is a key component in customizing patient therapy. Where confirming evidence for a gene variant is lacking, computational prediction may be employed. A standardized framework, however, does not yet exist for quantitative evaluation of disease association for uncertain or novel gene variants in an objective manner.

View Article and Find Full Text PDF
Article Synopsis
  • Histoplasmosis is a challenging fungal infection to diagnose due to symptom overlap with other diseases and the absence of specific tests.
  • Researchers used various sample preparation methods on urine samples and analyzed them with advanced mass spectrometry techniques to identify specific peptides.
  • The study successfully identified 52 peptides from 37 Histoplasma proteins in human urine, potentially paving the way for new diagnostic markers for the infection.
View Article and Find Full Text PDF

Legius syndrome (LS) is an autosomal dominant disorder caused by germline loss-of-function mutations in the sprouty-related, EVH1 domain containing 1 (SPRED1) gene. The phenotype of LS is multiple café au lait macules (CALM) with other commonly reported manifestations, including intertriginous freckling, lipomas, macrocephaly, and learning disabilities including ADHD and developmental delays. Since the earliest signs of LS and neurofibromatosis type 1 (NF1) syndrome are pigmentary findings, the two are indistinguishable and individuals with LS may meet the National Institutes of Health diagnostic criteria for NF1 syndrome.

View Article and Find Full Text PDF

The rapid advance of gene sequencing technologies has produced an unprecedented rate of discovery of genome variation in humans. A growing number of authoritative clinical repositories archive gene variants and disease phenotypes, yet there are currently many more gene variants that lack clear annotation or disease association. To date, there has been very limited coverage of gene-specific predictors in the literature.

View Article and Find Full Text PDF
Article Synopsis
  • Disseminated histoplasmosis is a serious fungal infection affecting those with weakened immune systems, prompting a study on urine protein profiles in healthy individuals and affected patients.
  • The research involved analyzing urine samples to identify and compare the proteins present in patients with proteinuria and histoplasma antigenuria, revealing 117 proteins in total.
  • The findings indicate specific physiological pathways linked to the identified proteins, highlighting changes in acute response, coagulation, glucocorticoid regulation, and suggesting further investigation into proteinuria causes could be valuable.
View Article and Find Full Text PDF

Although reported gene variants in the RET oncogene have been directly associated with multiple endocrine neoplasia type 2 and hereditary medullary thyroid carcinoma, other mutations are classified as variants of uncertain significance (VUS) until the associated clinical phenotype is made clear. Currently, some 46 non-synonymous VUS entries exist in curated archives. In the absence of a gold standard method for predicting phenotype outcomes, this follow up study applies feature selected amino acid physical and chemical properties feeding a Bayes classifier to predict disease association of uncertain gene variants into categories of benign and pathogenic.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how mass spectrometry can reveal peptide sequences from proteins, highlighting the need for both automated algorithms and manual validation for accurate interpretation, especially with MHC class I molecules.
  • Traditional trypsin digestion methods may not be suitable for all peptides, necessitating the manual review of spectral data to ensure accurate peptide identification.
  • The research identifies key fragmentation patterns and proposes rules to enhance manual validation, suggesting potential improvements for peptide search algorithms and the creation of new software tools.
View Article and Find Full Text PDF

Alport Syndrome is a progressive renal disease with cochlear and ocular involvement. The most common form ( approximately 80%) is inherited in an X-linked pattern. X-linked Alport Syndrome (XLAS) is caused by mutations in the type IV collagen alpha chain 5 (COL4A5).

View Article and Find Full Text PDF

The MHC class I (MHC-I) molecules ferry a cargo of peptides to the cell surface as potential ligands for CD8(+) cytotoxic T cells. For nearly 20 years, the cargo has been described as a collection of short 8-9 mer peptides, whose length and sequences were believed to be primarily determined by the peptide-binding groove of MHC-I molecules. Yet the mechanisms for producing peptides of such optimal length and composition have remained unclear.

View Article and Find Full Text PDF

Constitutive expression of the chimeric NPM/ALK fusion protein encoded by the t(2;5)(p32;q35) is a key oncogenic event in the pathogenesis of most anaplastic large cell lymphomas (ALCLs). The proteomic network alterations produced by this aberration remain largely uncharacterized. Using a mass spectrometry (MS)-driven approach to identify changes in protein expression caused by the NPM/ALK fusion, we identified diverse NPM/ALK-induced changes affecting cell proliferation, ribosome synthesis, survival, apoptosis evasion, angiogenesis, and cytoarchitectural organization.

View Article and Find Full Text PDF

With rapidly growing interest in the urine proteome, methods for reducing sample complexity are becoming increasingly important. Depletion strategies for removal of high-abundance proteins from human urine have not been reported. A commercial kit designed for depletion of abundant proteins from plasma was evaluated for removing top proteins from urine of patients with proteinuria.

View Article and Find Full Text PDF

Most major histocompatibility complex (MHC) class I-peptide-binding motifs are currently defined on the basis of quantitative in vitro MHC-peptide-binding assays. This information is used to develop bioinformatics-based tools to predict the binding of peptides to MHC class I molecules. To date few studies have analyzed the performance of these bioinformatics tools to predict the binding of peptides determined by sequencing of naturally processed peptides eluted directly from MHC class I molecules.

View Article and Find Full Text PDF

Multiple endocrine neoplasia type 2 (MEN2) is an inherited, autosomal-dominant disorder caused by deleterious mutations within the RET protooncogene. MEN2 RET mutations are mainly heterozygous, missense sequence changes found in RET exons 10, 11, and 13-16. Our group has developed the publicly available, searchable MEN2 RET database to aid in genotype/phenotype correlations, using Human Genome Variation Society recommendations for sequence variation nomenclature and database content.

View Article and Find Full Text PDF

Rituximab is a monoclonal antibody that targets the uniquely expressed B-cell CD20 receptor. Although recently approved for treatment of follicular lymphomas, the intracellular events that occur when rituximab binds to CD20 are largely unknown. Quantitative proteomic analysis of B-cell lymphoma-derived cells exposed to rituximab was performed.

View Article and Find Full Text PDF

The majority of >2000 HLA class I molecules can be clustered according to overlapping peptide binding specificities or motifs recognized by CD8(+) T cells. HLA class I motifs are classified based on the specificity of residues located in the P2 and the C-terminal positions of the peptide. However, it has been suggested that other positions might be relevant for peptide binding to HLA class I molecules and therefore be used for further characterization of HLA class I motifs.

View Article and Find Full Text PDF

Mass spectrometry-based proteomics in conjunction with liquid chromatography and bioinformatics analysis provides a highly sensitive and high-throughput approach for the identification of proteins. Hodgkin lymphoma is a form of malignant lymphoma characterized by the proliferation of Reed-Sternberg cells and background reactive lymphocytes. Comprehensive analysis of proteins expressed and released by Reed-Sternberg cells would assist in the discovery of potential biomarkers and improve our understanding of its pathogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Anaplastic large cell lymphoma (ALCL) is a type of non-Hodgkin lymphoma characterized by the CD30/Ki-1 antigen and includes variants defined by chromosomal translocations of the ALK gene, notably NPM-ALK and TPM3-ALK.
  • A cDNA microarray analysis was performed on tissue samples with NPM-ALK and TPM3-ALK fusions to compare gene expression profiles, revealing both shared and distinct deregulated genes involved in key cellular processes like cell cycle and apoptosis.
  • The findings highlight unique transcriptional signatures linked to each ALK fusion variant in ALCL, identifying new genes not previously associated with ALK-positive lymphomas.
View Article and Find Full Text PDF

The molecular chaperone heat shock protein 90 (Hsp90) affects the function of many oncogenic signaling proteins including nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) expressed in anaplastic large cell lymphoma (ALCL). While ALK-positive ALCL cells are sensitive to the Hsp90 inhibitor and the geldanamycin (GA) analog, 17-allylamino-17-demethoxygeldanamycin (17-AAG), the proteomic effects of these drugs on ALK-positive ALCL cells are unpublished. In this study, we investigated the cellular, biologic, and proteomic changes occurring in ALK-positive ALCL cells in response to GA treatment.

View Article and Find Full Text PDF