Publications by authors named "David K Britt"

Drinking water contamination with heavy metals, particularly lead, is a persistent problem worldwide with grave public health consequences. Existing purification methods often cannot address this problem quickly and economically. Here we report a cheap, water stable metal-organic framework/polymer composite, Fe-BTC/PDA, that exhibits rapid, selective removal of large quantities of heavy metals, such as Pb and Hg, from real world water samples.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have gained much attention as next-generation porous media for various applications, especially gas separation/storage, and catalysis. New MOFs are regularly reported; however, to develop better materials in a timely manner for specific applications, the interactions between guest molecules and the internal surface of the framework must first be understood. A combined experimental and theoretical approach is presented, which proves essential for the elucidation of small-molecule interactions in a model MOF system known as M2 (dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate; M = Mg, Mn, Fe, Co, Ni, Cu, or Zn), a material whose adsorption properties can be readily tuned via chemical substitution.

View Article and Find Full Text PDF

A new family of porous crystals was prepared by combining 1H-1,2,3-triazole and divalent metal ions (Mg, Mn, Fe, Co, Cu, and Zn) to give six isostructural metal-triazolates (termed MET-1 to 6). These materials are prepared as microcrystalline powders, which give intense X-ray diffraction lines. Without previous knowledge of the expected structure, it was possible to apply the newly developed charge-flipping method to solve the complex crystal structure of METs: all the metal ions are octahedrally coordinated to the nitrogen atoms of triazolate such that five metal centers are joined through bridging triazolate ions to form super-tetrahedral units that lie at the vertexes of a diamond-type structure.

View Article and Find Full Text PDF

A combination of polyanion size and charge allows the Keggin-type polyoxometalate (POM), [CuPW(11)O(39)](5-), a catalyst for some air-based organic oxidations, to fit snuggly in the pores of MOF-199 (HKUST-1), a metal-organic framework (MOF) with the POM countercations residing in alternative pores. This close matching of POM diameter and MOF pore size in this POM-MOF material, [Cu(3)(C(9)H(3)O(6))(2)](4)[{(CH(3))(4)N}(4)CuPW(11)O(39)H] (1), results in a substantial synergistic stabilization of both the MOF and the POM. In addition, this heretofore undocumented POM-MOF interaction results in a dramatic increase in the catalytic turnover rate of the POM for air-based oxidations.

View Article and Find Full Text PDF

[chemical reaction: see text]. Using an operationally simple deuterium isotopic perturbation method, the relative configuration of 1,3-diols can be determined directly using 1H NMR spectroscopy. A comparison of the OH chemical shifts for OH/OH and OH/OD isotopomers provides a reliable assessment of the relative configuration of the diol; anti-1,3-diols within polyacetate and polypropionate frameworks have upfield isotope shifts of 2-16 ppb, whereas syn-1,3-diols show upfield isotope shifts of 20-33 ppb.

View Article and Find Full Text PDF