Publications by authors named "David Julian Mcclements"

Based on the knowledge that poly(sialic acid) is a critical element for tumour development and that the receptors for its monomer are expressed on neutrophils, which play important roles in the progression and invasion of tumours, a poly(sialic acid)-p-octadecylamine conjugate (PSA-p-ODA) was synthesised and used to modify the surface of liposomal pixantrone (Pix-PSL) to improve the delivery of Pix to peripheral blood neutrophils (PBNs). The liposomes were fabricated using a remote loading technology via a pH gradient, and were then assessed for particle size, encapsulation efficiency, in vitro release, in vitro cytotoxicity, and pharmacokinetics. Simultaneously, in vitro and in vivo cellular uptake studies demonstrated that Pix-PSL provided an enhanced accumulation of Pix in PBNs.

View Article and Find Full Text PDF

Engineered nanomaterials are increasingly added to foods to improve quality, safety, or nutrition. Here we report the ability of ingested nanocellulose (NC) materials to reduce digestion and absorption of ingested fat. In the small intestinal phase of an acellular simulated gastrointestinal tract, the hydrolysis of free fatty acids (FFA) from triglycerides (TG) in a high-fat food model was reduced by 48.

View Article and Find Full Text PDF

Citrus oils and their emulsions have been widely used in food and beverage products due to their flavor, various beneficial health functions and relative high solubility for lipophilic bioactive components. However, the non-digestibility and instability has limited the application of emulsions made from a single type of citrus oil. In this study, common triacylglycerol oils (i.

View Article and Find Full Text PDF

Oil-in-water (O/W) emulsions can be utilized as effective pesticide delivery systems in the agricultural industry. In this study, the effects of hydrophile-lipophile balance (HLB), concentration, and location of surfactants on the formation and physical stability of O/W emulsions suitable for pesticide applications was investigated using dynamic light scattering and vertical laser profiling. A non-polar pesticide (lambda-cyhalothrin) was used as a model.

View Article and Find Full Text PDF

Insulin and an antacid [Mg(OH)] were co-encapsulated inside calcium alginate microgels (diameter = 280 μm) using a vibrating nozzle injector. Confocal microscopy indicated that insulin was successfully encapsulated inside the microgels and remained inside them after they were exposed to simulated gastric conditions. Localized fluorescence intensity measurements indicated that the internal pH of the antacid-loaded microgels was around pH 7.

View Article and Find Full Text PDF

The impact of interfacial composition on lipid and protein co-oxidation in oil-in-water emulsions containing a mixture of proteins and surfactants was investigated. The emulsions consisted of 5% v/v walnut oil, 0.5% w/v whey protein isolate (WPI), and 0 to 0.

View Article and Find Full Text PDF

Structural design principles are increasingly being used to develop colloidal delivery systems for bioactive agents. In this study, oil droplets were encapsulated within microgel-in-microgel systems. Initially, a nanoemulsion was formed that contained small whey protein-coated oil droplets ( d = 211 nm).

View Article and Find Full Text PDF

The objective of this study was to investigate the impact of high-intensity ultrasound treatment (sonication) on the molecular, physicochemical, and functional properties of walnut protein isolate. Aqueous walnut protein suspensions were sonicated at varying power levels (200, 400 or 600 W) and times (15 or 30 min), and then any alternations in protein structure and properties were determined. SDS-PAGE demonstrated that there were no changes in protein electrophoretic patterns, indicating that sonication did not break covalent bonds.

View Article and Find Full Text PDF

The highly acidic nature of the gastric fluids inside the human stomach can cause have health problems in certain individuals e.g., acid reflux and ulcers.

View Article and Find Full Text PDF

The composition and structure of the food matrix can have a major impact on the digestion. The aim of this work was to investigate the effects of endogenous proteins and lipids on starch digestibility in rice flour, with an emphasis on establishing the underlying physicochemical mechanisms involved. Native long-grain indica rice flour and rice flour with the lipids and/or proteins removed were subjected to a simulated digestion in vitro.

View Article and Find Full Text PDF

Particle-stabilized W/O/W emulsion gels were fabricated using a two-step procedure: ( i) a W/O emulsion was formed containing saccharose (for osmotic stress balance) and gelatin (as a gelling agent) in the aqueous phase and polyglycerol polyricinoleate (a lipophilic surfactant) in the oil phase; ( ii) this W/O emulsion was then homogenized with another water phase (W) containing wheat gliadin nanoparticles (hydrophilic emulsifier). The gliadin nanoparticles in the external aqueous phase aggregated at pH 5.5, which led to the formation of particle-stabilized W/O/W emulsion gels with good stability to phase separation.

View Article and Find Full Text PDF

The tannase (from Aspergillus niger) was immobilised by glutaraldehyde conjugation to amino-functionalised chitosan-coated magnetic nanoparticles (FeO-CS nanoparticles). Fourier-transform infrared spectroscopy and thermo-gravimetric analysis showed that chitosan was coated on the surface of magnetic nanoparticles. Transmission electron microscopy indicated that the synthesised nanoparticles (FeO-CS) were almost spherical or ellipsoidal with an average diameter of 5.

View Article and Find Full Text PDF

Curcumin is a bioactive phytochemical that can be utilized as a nutraceutical or pharmaceutical in functional foods, supplements, and medicines. However, the application of curcumin as a nutraceutical in commercial food and beverage products is currently limited by its low water-solubility, chemical instability, and poor oral bioavailability. In this study, all-natural colloidal delivery systems were developed to overcome these challenges, which consisted of saponin-coated curcumin nanoparticles formed using a pH-driven loading method.

View Article and Find Full Text PDF

Microcapsulses can be designed to effectively encapsulate, protect, and control the release of pesticides. In this study, emulsion-solvent evaporation method was used to fabricate microcapsules using dichloromethane as the solvent, polylactic acid (PLA) as the carrier materials, poly(vinyl alcohol) as the emulsifier, and β-cypermethrin as the entrapped pesticide. The effects of process parameters on the microcapsules characteristics (size, loading content, and encapsulation efficiency) were investigated.

View Article and Find Full Text PDF

Preparing stable protein-based microcapsules containing functional fatty acids and oils for food applications has been a big challenge. However, recent advances with transglutaminase (TGase) enzyme as an effective protein cross-linker could provide workable solutions for the encapsulation of omega-3 and omega-6 fatty acids without compromising their targeted release and their biological and physicochemical characteristics. The recent and available literature related to the microencapsulation techniques, physical and oxidative properties, and core retention and release mechanisms of TGase-crosslinked microcapsules entrapping edible oils were reviewed.

View Article and Find Full Text PDF

There are many examples of bioactive proteins and peptides that would benefit from oral delivery through functional foods, supplements, or medical foods, including hormones, enzymes, antimicrobials, vaccines, and ACE inhibitors. However, many of these bioactive proteins are highly susceptible to denaturation, aggregation or hydrolysis within commercial products or inside the human gastrointestinal tract (GIT). Moreover, many bioactive proteins have poor absorption characteristics within the GIT.

View Article and Find Full Text PDF

The development of plant-based foods and beverages is becoming increasingly popular because of growing consumer concerns about perceived ethical, health, and environmental issues. The current study examined the influence of oil droplet concentration on the physicochemical properties of oil-in-water (O/W) emulsions stabilized with a plant-based surfactant. Emulsions were utilized as model creamers, which consisted of medium chain triglycerides (MCT) as the oil phase and quillaja saponin as a plant-based surfactant.

View Article and Find Full Text PDF

Tocotrienols have been reported to have stronger bioactivities than tocopherols, and may therefore be suitable as a potent source of vitamin E in functional foods, supplements, and pharmaceuticals. However, their inclusion into new products is hindered by their low water-solubility and oral bioavailability. Oil-in-water emulsions (O/W) could provide an adequate delivery system for these bioactive compounds.

View Article and Find Full Text PDF

Previously, it was shown that catechin-egg white protein (CT-EWP) conjugates were effective antioxidant emulsifiers that could form and stabilize emulsions, and also inhibit the degradation of encapsulated carotenoids. The objective of the current study was to evaluate the impact of conjugation on the in vitro bioavailability, cellular antioxidant activity, and cytotoxicity of β-carotene-loaded emulsions. Lipid droplets coated with EWP or with CT-EWP conjugates exhibited quite similar behavior when they were passed through a simulated gastrointestinal tract.

View Article and Find Full Text PDF

There is great interest in developing colloidal delivery systems to enhance the water solubility and oral bioavailability of curcumin, which is a hydrophobic nutraceutical claimed to have several health benefits. In this study, a natural emulsifier was used to form sophorolipid-coated curcumin nanoparticles. The curcumin was loaded into sophorolipid micelles using a pH-driven mechanism based on the decrease in curcumin solubility at lower pH values.

View Article and Find Full Text PDF

Nanostructured colloidal delivery systems comprising of pectin-coated nanoliposomes (pectonanoliposomes) were developed as carriers for a bioactive polyphenolic compound (phloridzin). Phloridzin-loaded nanoliposomes were fabricated using a heating-stirring-sonication method, and coated with low methoxyl pectin using an electrostatic deposition approach. Dynamic light scattering, micro-electrophoresis, atomic force microscopy, and UV-Visible spectroscopy were used to investigate the impact of system composition on the size, charge, morphology and stability as well as immobilization, adsorption and encapsulation efficiencies of the pectonanoliposomes.

View Article and Find Full Text PDF

Unlabelled: Iron deficiency is a major global human health concern. Encapsulation of iron in functional food products may help to solve this problem. However, iron is highly reactive and may promote rapid lipid oxidation in fatty foods.

View Article and Find Full Text PDF

The design and development of nanoparticle- and microparticle-based delivery systems for the encapsulation, protection, and controlled release of active agents has grown considerably in the agrochemical, cosmetic, food, personal care, and pharmaceutical industries. These colloidal delivery systems can be utilized to overcome problems such as poor solubility, low activity, and chemical instability of active agents, as well as to create novel functional attributes such as controlled or targeted delivery. The purpose of this article is to develop a systematic approach, referred to as "delivery-by-design" (DbD), to make the design and fabrication process more efficient and effective.

View Article and Find Full Text PDF

Nanotechnology provides the food industry with new ways to modulate various aspects of food. Hence, engineered nanoparticles (NPs) are increasingly added to food and beverage products as functional ingredients. However, the impact of engineered as well as naturally occurring NPs on both commensal and pathogenic microorganisms within the gastrointestinal tract (GI) is not fully understood.

View Article and Find Full Text PDF

Essential oils, such as those isolated from cinnamon, are effective natural antimicrobial agents, but their utilization is limited by their low water-solubility. In this study, phase inversion temperature (PIT) was used to prepare cinnamon oil nanoemulsions. To this aim, it was hypothesized that cinnamon oil nanoemulsions could be fabricated by optimizing the oil phase composition and surfactant concentration of the system and their stability could be enhanced using a cooling-dilution method during the PIT.

View Article and Find Full Text PDF