Publications by authors named "David Jourd'Heuil"

Reduced skeletal muscle mass and oxidative capacity coexist in patients with pulmonary emphysema and are independently associated with higher mortality. If reduced cellular respiration contributes to muscle atrophy in that setting remains unknown. Using a mouse with genetically induced pulmonary emphysema that recapitulates muscle dysfunction, we found that reduced activity of succinate dehydrogenase (SDH) is a hallmark of its myopathic changes.

View Article and Find Full Text PDF

It is well established that axonal Neuregulin 1 type 3 (NRG1t3) regulates developmental myelin formation as well as EGR2-dependent gene activation and lipid synthesis. However, in peripheral neuropathy disease context, elevated axonal NRG1t3 improves remyelination and myelin sheath thickness without increasing Egr2 expression or activity, and without affecting the transcriptional activity of canonical myelination genes. Surprisingly, Pmp2, encoding for a myelin fatty acid binding protein, is the only gene whose expression increases in Schwann cells following overexpression of axonal NRG1t3.

View Article and Find Full Text PDF

Transient early endosome (EE)-mitochondria interactions can mediate mitochondrial iron translocation, but the associated mechanisms are still elusive. We showed that Divalent Metal Transporter 1 (DMT1) sustains mitochondrial iron translocation via EE-mitochondria interactions in triple-negative MDA-MB-231, but not in luminal A T47D breast cancer cells. DMT1 silencing increases labile iron pool (LIP) levels and activates PINK1/Parkin-dependent mitophagy in MDA-MB-231 cells.

View Article and Find Full Text PDF
Article Synopsis
  • Identifying new regulators of vascular smooth muscle cell function is key to understanding cardiovascular diseases; the study focuses on cytoglobin, a hemoglobin-like protein with unique roles in blood vessel health.
  • Research found that when cytoglobin was deleted in mice, there was a quicker loss of contractile genes and increased DNA damage in injured carotid arteries.
  • The study revealed that cytoglobin moves into the nucleus of vascular smooth muscle cells, where it interacts with a chromatin protein called HMGB2, potentially regulating gene expression and protecting against DNA damage.
View Article and Find Full Text PDF
Article Synopsis
  • Identifying new regulators of vascular smooth muscle cell function is crucial for understanding cardiovascular diseases, and cytoglobin has been found to play important roles in this area.
  • Studies show that when cytoglobin is deleted, it leads to quicker loss of contractile genes and increased DNA damage in injured carotid arteries.
  • The research reveals that cytoglobin moves into the nucleus of vascular smooth muscle cells, interacting with the protein HMGB2 to help prevent DNA damage and regulate gene activity in the vascular system.
View Article and Find Full Text PDF

The oxidant hydrogen peroxide serves as a signaling molecule that alters many aspects of cardiovascular functions. Recent studies suggest that cytoglobin - a hemoglobin expressed in the vasculature - may promote electron transfer reactions with proposed functions in hydrogen peroxide decomposition. Here, we determined the extent to which cytoglobin regulates intracellular hydrogen peroxide and established mechanisms.

View Article and Find Full Text PDF

Radiation is associated with tissue damage and increased risk of atherosclerosis, but there are currently no treatments and a very limited mechanistic understanding of how radiation impacts tissue repair mechanisms. We uncovered that radiation significantly delayed temporal resolution programs that were associated with decreased efferocytosis in vivo. Resolvin D1 (RvD1), a known proresolving ligand, promoted swift resolution and restored efferocytosis in sublethally irradiated mice.

View Article and Find Full Text PDF

Patients with pulmonary emphysema often develop locomotor muscle dysfunction, which is independently associated with disability and higher mortality in that population. Muscle dysfunction entails reduced force generation capacity, which partially depends on fibers' oxidative potential, yet very little mechanistic research has focused on muscle respiration in pulmonary emphysema. Using a recently established animal model of pulmonary emphysema-driven skeletal muscle dysfunction, we found downregulation of SDHC (succinate dehydrogenase subunit C) in association with lower oxygen consumption and fatigue tolerance in locomotor muscles.

View Article and Find Full Text PDF

Cytoglobin is an evolutionary ancient hemoglobin with poor functional annotation. Rather than constrained to penta coordination, cytoglobin's heme iron may exist either as a penta or hexacoordinated arrangement when exposed to different intracellular environments. Two cysteine residues at the surface of the protein form an intramolecular disulfide bond that regulates iron coordination, ligand binding, and peroxidase activity.

View Article and Find Full Text PDF

Multifunctional Ca/calmodulin-dependent protein kinase II (CaMKII) is a multigene family with isoform-specific regulation of vascular smooth muscle (VSM) functions. In previous studies, we found that vascular injury resulted in VSM dedifferentiation and reduced expression of the CaMKIIγ isoform in medial wall VSM. Smooth muscle knockout of CaMKIIγ enhanced injury-induced VSM neointimal hyperplasia, whereas CaMKIIγ overexpression inhibited VSM proliferation and neointimal formation.

View Article and Find Full Text PDF

Injury-induced stenosis is a serious vascular complication. We previously reported that p38α (MAPK14), a redox-regulated p38MAPK family member was a negative regulator of the VSMC contractile phenotype in vitro. Here we evaluated the function of VSMC-MAPK14 in vivo in injury-induced neointima hyperplasia and the underlying mechanism using an inducible SMC-MAPK14 knockout mouse line (iSMC-MAPK14).

View Article and Find Full Text PDF

Most renal transplants ultimately fail secondary to chronic allograft nephropathy (CAN). Vimentin (vim) is a member of the intermediate filament family of proteins and has been shown to be important in the development of CAN. One of the pathways leading to chronic renal fibrosis after transplant is thought to be epithelial to mesenchymal transition (EMT).

View Article and Find Full Text PDF

Pulmonary hypertension (PH) is characterized by increased vasoconstriction and smooth muscle cell hyperplasia driving pathological vascular remodeling of arterial vessels. In this short review, we discuss the primary source of reactive oxygen species (ROS) and nitric oxide (NO) relevant to PH and the mechanism by which dysregulation of their production contributes to PH. Specifically, hypoxia-induced PH is associated with diminished endothelial nitric oxide synthase (eNOS)-derived NO production and increased production of superoxide (O) through eNOS uncoupling and defective mitochondrial respiration.

View Article and Find Full Text PDF

Human cardiac stem/progenitor cells (hCPCs) may serve in regenerative medicine to repair the infarcted heart. However, this approach is severely limited by the poor survival of donor cells. Recent studies suggest that the mammalian globin cytoglobin (CYGB) regulates nitric oxide (NO) metabolism and cell death.

View Article and Find Full Text PDF

Objective: The role of hemoglobin and myoglobin in the cardiovascular system is well established, yet other globins in this context are poorly characterized. Here, we examined the expression and function of cytoglobin (CYGB) during vascular injury.

Approach And Results: We characterized CYGB content in intact vessels and primary vascular smooth muscle (VSM) cells and used 2 different vascular injury models to examine the functional significance of CYGB in vivo.

View Article and Find Full Text PDF

Background: The arteriovenous fistula (AVF) is the preferred form of hemodialysis access for patients with chronic kidney disease. However, AVFs are associated with significant problems including high incidence of both early and late failures, usually attributed to inadequate venous arterialization and neointimal hyperplasia, respectively. Understanding the cellular basis of venous remodeling in the setting of AVF could provide targets for improving AVF patency rates.

View Article and Find Full Text PDF

Tetraspanins (TSPANs) comprise a large family of 4-transmembrane domain proteins. The importance of TSPANs in vascular smooth muscle cells (VSMCs) is unexplored. Given that TGF-β1 and myocardin (MYOCD) are potent activators for VSMC differentiation, we screened for TGF-β1 and MYOCD/serum response factor (SRF)-regulated in VSMC by using RNA-seq analyses and RNA-arrays.

View Article and Find Full Text PDF

Objective: Long noncoding RNAs (lncRNA) represent a growing class of noncoding genes with diverse cellular functions. We previously reported on SENCR, an lncRNA that seems to support the vascular smooth muscle cell (VSMC) contractile phenotype. However, information about the VSMC-specific lncRNAs regulated by myocardin (MYOCD)/serum response factor, the master switch for VSMC differentiation, is unknown.

View Article and Find Full Text PDF

The contribution of oxidative stress to ischemic brain damage is well established. Nevertheless, for unknown reasons, several clinically tested antioxidant therapies have failed to show benefits in human stroke. Based on our previous in vitro work, we hypothesized that the neuroprotective potency of antioxidants is related to their ability to limit the release of the excitotoxic amino acids glutamate and aspartate.

View Article and Find Full Text PDF

Measurement of fractional nitric oxide concentration in exhaled breath (FENO) is a simple, noninvasive method to evaluate eosinophilic airway inflammation. Nitric oxide (NO) arising from peripheral small airways/alveoli (alveolar NO concentration [CalvNO]) can be estimated using multiple flow rates and a two-compartment model of the airways and alveoli. Omalizumab, a monoclonal anti-IgE antibody, is approved for the treatment of allergic asthma and also has been shown to decrease FENO levels.

View Article and Find Full Text PDF

Recent studies indicate the formation of protein nitrosamines in vivo and tryptophan residues in proteins might represent important targets of nitrosative and oxidative stress. In the present work, we examined the mechanism by which xanthine oxidase (XO) denitrosates N-nitroso Trp residues and determined the applicability of the reactions involved to the detection of nitrosated Trp residues by tri-iodide-based chemiluminescence. We found that - in addition to superoxide - denitrosation of N-acetyl-nitroso Trp (NANT) by hypoxanthine and XO occurred via the intermediacy of uric acid.

View Article and Find Full Text PDF

Objective: The long-acting β2-agonist salmeterol in combination with the corticosteroid fluticasone propionate is used in clinical practice for the treatment of mild persistent asthma. Although the effect of fluticasone propionate alone in asthmatic patients is well documented, the effect of fluticasone propionate/salmeterol (FSC) combination therapy on airway inflammation and airway hyperresponsiveness (AHR) is not well characterized. Thus, we evaluated AHR, exhaled nitric oxide (FE(NO)), and nitrite and nitrate in exhaled breath condensates (EBCs) from mild persistent asthmatic patients treated with a low-dose FSC (100/50).

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are generated in the vascular wall upon stimulation by proinflammatory cytokines and are important mediators of diverse cellular responses that occur as a result of vascular injury. Members of the NADPH oxidase (NOX) family of proteins have been identified in vascular smooth muscle (VSM) cells as important sources of ROS. In this study, we tested the hypothesis that NOX4 is a proximal mediator of IL-1β-dependent activation of PKCδ and increases IL-1β-stimulated c-Jun kinase (JNK) signaling in primary rat aortic VSM cells.

View Article and Find Full Text PDF

The S-nitrosation (also referred to as S-nitrosylation) of cysteine residues is an important post-translational protein modification that regulates protein function and cell signaling. The original research articles and reviews in this Forum cover important concepts in protein S-nitrosation and identify key developments and opportunities for progress in this area. Defining the mechanisms by which S-nitrosothiols (RSNOs) may be formed and decomposed in cells and tissues, the integration of the biological chemistry associated with nitric oxide (NO) and other derivatives such as nitrite, and the development of new methodologies merging proteomics and direct quantitation are all key issues that we believe would require detailed attention.

View Article and Find Full Text PDF

Significance: Nitric oxide (NO) plays diverse physiological roles in the central nervous system, where it modulates neuronal communication, regulates blood flow, and contributes to the innate immune responses. In a number of brain pathologies, the excessive production of NO also leads to the formation of reactive and toxic intermediates generically termed reactive nitrogen species (RNS). RNS cause irreversible or poorly reversible damage to brain cells.

View Article and Find Full Text PDF