Publications by authors named "David Joswiak"

Magnesium stable isotope ratios and minor element abundances of five olivine particles from comet 81P/Wild 2 were examined by secondary ion mass spectrometry (SIMS). Wild 2 olivine particles exhibit only small variations in δMg values from -1.0 / ‰ to 0.

View Article and Find Full Text PDF

Filamentary enstatite crystals are found in interplanetary dust particles (IDPs) of likely cometary origin but are very rare or absent in meteorites. Crystallographic characteristics of filamentary enstatites indicate that they condensed directly from vapor. We measured the O isotopic composition of an enstatite ribbon from a giant cluster IDP to be δO = 25 ± 55, δO = -19 ± 129, ΔO = -32 ± 134 (2σ errors), which is inconsistent at the 2σ level with the composition of the Sun inferred from the Genesis solar wind measurements.

View Article and Find Full Text PDF

The solar system formed from interstellar dust and gas in a molecular cloud. Astronomical observations show that typical interstellar dust consists of amorphous (-) silicate and organic carbon. Bona fide physical samples for laboratory studies would yield unprecedented insight about solar system formation, but they were largely destroyed.

View Article and Find Full Text PDF

In order to explore the link between comet 81P/Wild 2 and materials in primitive meteorites, seven particles 5 to 15 μm in diameter from comet 81P/Wild 2 have been analyzed for their oxygen isotope ratios using a secondary ion mass spectrometer. Most particles are single minerals consisting of olivine or pyroxene with Mg# higher than 85, which are relatively minor in 81P/Wild 2 particles (~1/3 of the O-poor cluster). Four particles extracted from Track 149 are O-poor and show ΔO (= δO - 0.

View Article and Find Full Text PDF

Using chemical and petrologic evidence and modeling, we deduce that two chondrule-like particles named Iris and Callie, from Stardust cometary track C2052,12,74, formed in an environment very similar to that seen for type II chondrules in meteorites. Iris was heated near liquidus, equilibrated, and cooled at ≤ 100 °C/hr and within ≈ 2 log units of the IW buffer with a high partial pressure of Na such as would be present with dust enrichments of ≈ 10. There was no detectable metamorphic, nebular or aqueous alteration.

View Article and Find Full Text PDF

The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a wide range of formation conditions, probably reflecting very different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and the absence of hydrous phases indicate that comet Wild 2 experienced little or no aqueous alteration.

View Article and Find Full Text PDF

We measured the elemental compositions of material from 23 particles in aerogel and from residue in seven craters in aluminum foil that was collected during passage of the Stardust spacecraft through the coma of comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size scale analyzed ( approximately 180 ng). The mean elemental composition of this Wild 2 material is consistent with the CI meteorite composition, which is thought to represent the bulk composition of the solar system, for the elements Mg, Si, Mn, Fe, and Ni to 35%, and for Ca and Ti to 60%.

View Article and Find Full Text PDF

The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula.

View Article and Find Full Text PDF