IEEE Trans Pattern Anal Mach Intell
March 2024
Deep learning approaches process data in a layer-by-layer way with intermediate (or latent) features. We aim at designing a general solution to optimize the latent manifolds to improve the performance on classification, segmentation, completion and/or reconstruction through probabilistic models. This paper proposes a variational inference model which leads to a clustered embedding.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
November 2017
3D object temporal trackers estimate the 3D rotation and 3D translation of a rigid object by propagating the transformation from one frame to the next. To confront this task, algorithms either learn the transformation between two consecutive frames or optimize an energy function to align the object to the scene. The motivation behind our approach stems from a consideration on the nature of learners and optimizers.
View Article and Find Full Text PDFReal-time visual tracking of a surgical instrument holds great potential for improving the outcome of retinal microsurgery by enabling new possibilities for computer-aided techniques such as augmented reality and automatic assessment of instrument manipulation. Due to high magnification and illumination variations, retinal microsurgery images usually entail a high level of noise and appearance changes. As a result, real-time tracking of the surgical instrument remains challenging in in-vivo sequences.
View Article and Find Full Text PDF