Pf-5 is an effective biocontrol agent that protects many crops against pathogens, including the fungal pathogen causing gray mold disease in crops. Previous studies have demonstrated the important role of antibiotics pyoluteorin (PLT) and 2,4-diacetylphloroglucinol (DAPG) in Pf-5-mediated biocontrol. To assess the potential involvement of PLT and DAPG in the biocontrol exerted by Pf-5 against in the phyllosphere of , two knockout Pf-5 mutants were generated by in-frame deletion of genes or , required for the synthesis of PLT or DAPG respectively, using a two-step allelic exchange method.
View Article and Find Full Text PDFAmong the oldest domesticated crops, cannabis plants ( L., marijuana and hemp) have been used to produce food, fiber, and drugs for thousands of years. With the ongoing legalization of cannabis in several jurisdictions worldwide, a new high-value market is emerging for the supply of marijuana and hemp products.
View Article and Find Full Text PDFPlant growth-promoting rhizobacteria (PGPR) deploy several mechanisms to improve plant health, growth and yield. The aim of this study was to evaluate the efficacy of two spp. strains and three spp.
View Article and Find Full Text PDFis increasingly being grown around the world for medicinal, industrial, and recreational purposes. As in all cultivated plants, cannabis is exposed to a wide range of pathogens, including powdery mildew (PM). This fungal disease stresses cannabis plants and reduces flower bud quality, resulting in significant economic losses for licensed producers.
View Article and Find Full Text PDFGray mold caused by is one of the most widespread and damaging diseases in cannabis crops worldwide. With challenging restrictions on pesticide use and few effective control measures, biocontrol agents are needed to manage this disease. The aim of this study was to identify bacterial biocontrol agents with wide-spectrum activity against .
View Article and Find Full Text PDFCannabis ( L.) offers many industrial, agricultural, and medicinal applications, but is commonly threatened by the gray mold disease caused by the fungus . With few effective control measures currently available, the use of beneficial rhizobacteria represents a promising biocontrol avenue for cannabis.
View Article and Find Full Text PDFPlant diseases bear names such as leaf blights, root rots, sheath blights, tuber scabs, and stem cankers, indicating that symptoms occur preferentially on specific parts of host plants. Accordingly, many plant pathogens are specialized to infect and cause disease in specific tissues and organs. Conversely, others are able to infect a range of tissues, albeit often disease symptoms fluctuate in different organs infected by the same pathogen.
View Article and Find Full Text PDFThe incipient legalization and commercialization of in Canada have promulgated research into characterizing the plant's microbiome as it promotes many facets of plant growth and health. The emblematic production of commercially important secondary metabolites, namely tetrahydrocannabinol (THC), cannabidiol (CBD) and terpenes, has warranted investigating the modulating capacity of these molecules on the plant microbiome. cultivars can be classified into chemotypes depending on the relative levels of THC and CBD they produce; their biosynthesis also varies spatially and temporally during the life cycle of the plant.
View Article and Find Full Text PDFMicrobiol Resour Announc
June 2019
LBUM677 has shown the ability to increase plant biomass and seed oil yield in soybean, canola, and (corn gromwell) when inoculated in the rhizosphere. Here, we report a draft genome sequence of LBUM677, with an estimated size of 6.14 Mb.
View Article and Find Full Text PDFSynchytrium endobioticum is an obligate biotrophic soilborne Chytridiomycota (chytrid) species that causes potato wart disease, and represents the most basal lineage among the fungal plant pathogens. We have chosen a functional genomics approach exploiting knowledge acquired from other fungal taxa and compared this to several saprobic and pathogenic chytrid species. Observations linked to obligate biotrophy, genome plasticity and pathogenicity are reported.
View Article and Find Full Text PDFBackground: Phytophthora infestans is responsible for late blight, one of the most important potato diseases. Phenazine-1-carboxylic acid (PCA)-producing Pseudomonas fluorescens strain LBUM223 isolated in our laboratory shows biocontrol potential against various plant pathogens. To characterize the effect of LBUM223 on the transcriptome of P.
View Article and Find Full Text PDFFungi of the Pucciniales order cause rust diseases which, altogether, affect thousands of plant species worldwide and pose a major threat to several crops. How rust effectors-virulence proteins delivered into infected tissues to modulate host functions-contribute to pathogen virulence remains poorly understood. Melampsora larici-populina is a devastating and widespread rust pathogen of poplar, and its genome encodes 1184 identified small secreted proteins that could potentially act as effectors.
View Article and Find Full Text PDFHerein provided is the full-genome sequence of Pseudomonas fluorescens LBUM636. This strain is a plant growth-promoting rhizobacterium (PGPR) which produces phenazine-1-carboxylic acid, an antibiotic involved in the biocontrol of numerous plant pathogens, including late blight of potato caused by the plant pathogen Phytophthora infestans.
View Article and Find Full Text PDFPseudomonas brassicacearum LBUM300, a plant rhizosphere-inhabiting bacterium, produces 2,4-diacetylphloroglucinol and hydrogen cyanide and has shown antagonistic activity against the plant pathogens Verticillium dahliae, Phytophthora cactorum, and Clavibacter michiganensis subsp. michiganensis. Here, we report the complete genome sequence of P.
View Article and Find Full Text PDFWhite pine blister rust is caused by the fungal pathogen Cronartium ribicola J.C. Fisch (Basidiomycota, Pucciniales).
View Article and Find Full Text PDFPseudomonas fluorescens LBUM223 is a plant growth-promoting rhizobacterium (PGPR) with biocontrol activity against various plant pathogens. It produces the antimicrobial metabolite phenazine-1-carboxylic acid, which is involved in the biocontrol of Streptomyces scabies, the causal agent of common scab of potato. Here, we report the complete genome sequence of P.
View Article and Find Full Text PDFSeveral obligate biotrophic phytopathogens, namely oomycetes and fungi, invade and feed on living plant cells through specialized structures known as haustoria. Deploying an arsenal of secreted proteins called effectors, these pathogens balance their parasitic propagation by subverting plant immunity without sacrificing host cells. Such secreted proteins, which are thought to be delivered by haustoria, conceivably reprogram host cells and instigate structural modifications, in addition to the modulation of various cellular processes.
View Article and Find Full Text PDFRust fungi include many species that are devastating crop pathogens. To develop resistant plants, a better understanding of rust virulence factors, or effector proteins, is needed. Thus far, only six rust effector proteins have been described: AvrP123, AvrP4, AvrL567, AvrM, RTP1, and PGTAUSPE-10-1.
View Article and Find Full Text PDFWheat leaf rust, caused by the basidiomycete Puccinia triticina, can cause yield losses of up to 20% in wheat producing regions. During infection, the fungus forms haustoria that secrete proteins into the plant cell and effect changes in plant transcription, metabolism, and defense. It is hypothesized that new races emerge as a result of overcoming plant resistance via changes in the secreted effector proteins.
View Article and Find Full Text PDFPseudozyma flocculosa is related to the model plant pathogen Ustilago maydis yet is not a phytopathogen but rather a biocontrol agent of powdery mildews; this relationship makes it unique for the study of the evolution of plant pathogenicity factors. The P. flocculosa genome of ~23 Mb includes 6877 predicted protein coding genes.
View Article and Find Full Text PDFDibromothymoquinone (DBMIB) has been used as a specific inhibitor of plastoquinol oxidation at the Q0 binding site of the cytochrome b6f complex for 40 years. It is thought to suppress electron transfer between photosystem (PS) II and I, as well as cyclic electron transfer around PSI. However, DBMIB has also been reported to act as a quencher of chlorophyll excited states.
View Article and Find Full Text PDFThe response of the heat-sensitive dgd1-2 and dgd1-3 Arabidopsis mutants depleted in the galactolipid DGDG to photoinhibition of chloroplasts photosystem II was studied to verify if there is a relationship between heat stress vulnerability due to depletion in DGDG and the susceptibility to photoinhibitory damage. Non-photochemical quenching (NPQ) is known to dissipate excessive absorbed light energy as heat to protect plants against photodamage. The main component of NPQ is dependent of the transthylakoid pH gradient and is modulated by zeaxanthin (Zx) synthesis.
View Article and Find Full Text PDF