Demands to manage the risks of artificial intelligence (AI) are growing. These demands and the government standards arising from them both call for trustworthy AI. In response, we adopt a convergent approach to review, evaluate, and synthesize research on the trust and trustworthiness of AI in the environmental sciences and propose a research agenda.
View Article and Find Full Text PDFHolographic cloud probes provide unprecedented information on cloud particle density, size and position. Each laser shot captures particles within a large volume, where images can be computationally refocused to determine particle size and location. However, processing these holograms with standard methods or machine learning (ML) models requires considerable computational resources, time and occasional human intervention.
View Article and Find Full Text PDFThe ocean mixed layer plays an important role in the coupling between the upper ocean and atmosphere across a wide range of time scales. Estimation of the variability of the ocean mixed layer is therefore important for atmosphere-ocean prediction and analysis. The increasing coverage of in situ Argo profile data allows for an increasingly accurate analysis of the mixed layer depth (MLD) variability associated with deviations from the seasonal climatology.
View Article and Find Full Text PDF