Background: Nuclear factor-κB is a multi-subunit transcription factor that plays a central role in cellular senescence. We previously reported that an increase in the p52 subunit is seen in senescent cells and aged tissue. In the current work, we examined the mechanism by which p52 is activated and whether the increase in p52 promotes senescence.
View Article and Find Full Text PDFThe alkylating agent, temozolomide (TMZ), is the most commonly used chemotherapeutic for the treatment of glioblastoma (GBM). The anti-glioma effect of TMZ involves a complex response that includes G2-M cell cycle arrest and cyclin-dependent kinase 1 (CDK1) activation. While CDK1 phosphorylation is a well-described consequence of TMZ treatment, we find that TMZ also robustly induces CDK1 expression.
View Article and Find Full Text PDFBackground: Nuclear factor-κB (NF-κB) plays a prominent role in promoting inflammation and resistance to DNA damaging therapy. We searched for proteins that modulate the NF-κB response as a prerequisite to identifying novel factors that affect sensitivity to DNA damaging chemotherapy.
Results: Using streptavidin-agarose pull-down, we identified the DExD/H-box RNA helicase, DDX39B, as a factor that differentially interacts with κB DNA probes.
Background: Textual analysis of obituaries provides insight into the shared values of a profession or community. Neurosurgeon obituaries are frequently published in both the medical literature and the lay press, but the content of these works has never been analyzed.
Methods: Using obituary pieces from Neurosurgery, Journal of Neurosurgery, and the New York Times, frequent terms were quantified through preliminary text analysis to derive the relative importance of concepts such as innovation, research, training and family.
Alkylating chemotherapy is a central component of the management of glioblastoma (GBM). Among the factors that regulate the response to alkylation damage, NF-κB acts to both promote and block cytotoxicity. In this study, we used genome-wide expression analysis in U87 GBM to identify NF-κB-dependent factors altered in response to temozolomide and found the long noncoding RNA (lncRNA) MALAT1 as one of the most significantly upregulated.
View Article and Find Full Text PDFOBJECTIVEModern surgical planning and prognostication requires the most accurate outcomes data to practice evidence-based medicine. For clinicians treating children following traumatic brain injury (TBI) these data are severely lacking. The first aim of this study was to assess published CT classification systems in the authors' pediatric cohort.
View Article and Find Full Text PDFTemozolomide is used widely to treat malignant glioma, but the overall response to this agent is generally poor. Resistance to DNA-damaging drugs such as temozolomide has been related to the induction of antiapoptotic proteins. Specifically, the transcription factor NF-κB has been suggested to participate in promoting the survival of cells exposed to chemotherapy.
View Article and Find Full Text PDFThe apical damage kinase, ATR, is activated by replication stress (RS) both in response to DNA damage and during normal S-phase. Loss of function studies indicates that ATR acts to stabilize replication forks, block cell cycle progression and promote replication restart. Although checkpoint failure and replication fork collapse can result in cell death, no direct cytotoxic pathway downstream of ATR has previously been described.
View Article and Find Full Text PDFUnlabelled: A major obstacle to the management of malignant glioma is the inability to effectively deliver therapeutic agent to the tumor. In this study, we describe a polymeric nanoparticle vector that not only delivers viable therapeutic, but can also be tracked in vivo using MRI. Nanoparticles, produced by a non-emulsion technique, were fabricated to carry iron oxide within the shell and the chemotherapeutic agent, temozolomide (TMZ), as the payload.
View Article and Find Full Text PDFPhosphorylation of the NF-κB subunit, p50, is necessary for cytotoxicity in response to DNA methylation damage. Here, we demonstrate that serine 329 phosphorylation regulates the interaction of p50 with specific NF-κB binding elements based on the identity of a single κB-site nucleotide. Specifically, S329 phosphorylation reduces the affinity of p50 for κB-sites that have a cytosine (C) at the -1 position without affecting binding to sequences with a -1 adenine.
View Article and Find Full Text PDFThe functional significance of the signaling pathway induced by O(6)-methylguanine (O(6)-MeG) lesions is poorly understood. Here, we identify the p50 subunit of NF-κB as a central target in the response to O(6)-MeG and demonstrate that p50 is required for S(N)1-methylator-induced cytotoxicity. In response to S(N)1-methylation, p50 facilitates the inhibition of NF-κB-regulated antiapoptotic gene expression.
View Article and Find Full Text PDF