Publications by authors named "David J Vaux"

The general segregation of a molecular class, lipids, from the pathways of cellular communication, via endo-membranes, has resulted in the over-simplification and misconceptions in deciphering cell signalling mechanisms. Mechanisms in signal transduction and protein activation require targeting of proteins to membranous compartments with a specific localised morphology and dynamics that are dependent on their lipid composition. Many posttranslational events define cellular behaviours and without the active role of membranous compartments these events lead to various dysregulations of the signalling pathways.

View Article and Find Full Text PDF

Many protein misfolding diseases (e.g. type II diabetes and Alzheimer's disease) are characterised by amyloid deposition.

View Article and Find Full Text PDF

Amyloidoses (misfolded polypeptide accumulation) are among the most debilitating diseases our aging societies face. Amyloidogenesis can be catalyzed by hydrophobic-hydrophilic interfaces (e.g.

View Article and Find Full Text PDF

The nuclei of cells may exhibit invaginations of the nuclear envelope under a variety of conditions. These invaginations form a branched network termed the nucleoplasmic reticulum (NR), which may be found in cells in pathological and physiological conditions. While an extensive NR is a hallmark of cellular senescence and shows associations with some cancers, very little is known about the formation of NR in physiological conditions, despite the presence of extensive nuclear invaginations in some cell types such as endometrial cells.

View Article and Find Full Text PDF

Many neurodegenerative diseases are characterized by amyloid deposition. In Alzheimer's disease (AD), β-amyloid (Aβ) peptides accumulate extracellularly in senile plaques. The AD amyloid cascade hypothesis proposes that Aβ production or reduced clearance leads to toxicity.

View Article and Find Full Text PDF

Deposition of misfolded amyloid polypeptides, associated with cell death, is the hallmark of many degenerative diseases (e.g. type II diabetes mellitus and Alzheimer's disease).

View Article and Find Full Text PDF

Structure of interphase cell nuclei remains dynamic and can undergo various changes of shape and organisation, in health and disease. The double-membraned envelope that separates nuclear genetic material from the rest of the cell frequently includes deep, branching tubular invaginations that form a dynamic nucleoplasmic reticulum (NR). This study addresses mechanisms by which NR can form in interphase nuclei.

View Article and Find Full Text PDF

The nuclear lamina can bind and sequester transcription factors (TFs), a function lost if the lamina is abnormal, with missing or mutant lamin proteins. We now show that TF sequestration is not all-or-nothing, but a dynamic physiological response to external signals. We show that the binding of the ubiquitous TF, Oct-1, to lamin B1 was reversed under conditions of cellular stress caused, inter alia, by the chemical methylating agent methylmethanesulfonate (MMS).

View Article and Find Full Text PDF

Tregs can adopt a catabolic metabolic program with increased capacity for fatty acid oxidation-fueled oxidative phosphorylation (OXPHOS). It is unclear why this form of metabolism is favored in Tregs and, more specifically, whether this program represents an adaptation to the environment and developmental cues or is "hardwired" by Foxp3. Here we show, using metabolic analysis and an unbiased mass spectroscopy-based proteomics approach, that Foxp3 is both necessary and sufficient to program Treg-increased respiratory capacity and Tregs' increased ability to utilize fatty acids to fuel oxidative phosphorylation.

View Article and Find Full Text PDF

Nanoscale chemical mapping of newly-synthesised phospholipid molecules inside a mammalian cell is demonstrated using tip-enhanced Raman spectroscopy (TERS) for the first time using mouse pre-adipocyte cells as a model system. Newly-synthesised membrane phospholipid distribution within a pre-adipocyte cell is mapped with <20 nm spatial resolution, overcoming the diffraction limit of confocal Raman spectroscopy via plasmonic enhancement of Raman signals at a TERS tip-apex.

View Article and Find Full Text PDF

The mammalian nuclear envelope (NE) can develop complex dynamic membrane-bounded invaginations in response to both physiological and pathological stimuli. Since the formation of these nucleoplasmic reticulum (NR) structures can occur during interphase, without mitotic NE breakdown and reassembly, some other mechanism must drive their development. Here we consider models for deformation of the interphase NE, together with the evidence for their potential roles in NR formation.

View Article and Find Full Text PDF

Many chronic degenerative diseases result from aggregation of misfolded polypeptides to form amyloids. Many amyloidogenic polypeptides are surfactants and their assembly can be catalysed by hydrophobic-hydrophilic interfaces (an air-water interface in-vitro or membranes in-vivo). We recently demonstrated the specificity of surface-induced amyloidogenesis but the mechanisms of amyloidogenesis and more specifically of adsorption at hydrophobic-hydrophilic interfaces remain poorly understood.

View Article and Find Full Text PDF

Pulse-chase methods offer powerful tools for following the evolution of a biological system over time, but are usually limited to ensemble measurements of the average behavior of very large numbers of cells. Here we describe three methods ranging from a true pulse-chase, through selective regional photoactivation, to pharmacological induction of an altered protein state, which can be applied to time-dependent studies at the single-cell level. These methods are exemplified by experimental protocols to follow region-selective nuclear envelope targeting of nascent phospholipids, a nascent nuclear lamin protein (lamin B1), and an immature lamin precursor (prelamin A).

View Article and Find Full Text PDF

Understanding mechanisms of information processing in cellular signaling networks requires quantitative measurements of protein activities in living cells. Biosensors are molecular probes that have been developed to directly track the activity of specific signaling proteins and their use is revolutionizing our understanding of signal transduction. The use of biosensors relies on the assumption that their activity is linearly proportional to the activity of the signaling protein they have been engineered to track.

View Article and Find Full Text PDF

Correlative fluorescence and soft X-ray cryo-microscopy/tomography on flat sample holders is perfectly suited to study the uncompromised physiological status of adherent cells at its best possible preservation by imaging after fast cryo-immobilization. To understand the mechanism by which herpesviruses induce nucleoplasmic reticulum, i.e.

View Article and Find Full Text PDF

The nuclear envelope (NE) surrounds the nucleus and separates it from the cytoplasm. The NE is not a passive structural component, but rather contributes to various cellular processes such as genome organization, transcription, signaling, and stress responses. Although the NE is mostly a smooth surface, it also forms invaginations that can reach deep into the nucleoplasm and may even traverse the nucleus completely.

View Article and Find Full Text PDF

Amyloid formation is a hallmark of protein misfolding diseases (e.g. Type II diabetes mellitus).

View Article and Find Full Text PDF

We have tested the application of high-mannose-binding lectins as analytical reagents to identify N-glycans in the early secretory pathway of HeLa cells during subcellular fractionation and cytochemistry. Post-endoplasmic reticulum (ER) pre-Golgi intermediates were separated from the ER on Nycodenz-sucrose gradients, and the glycan composition of each gradient fraction was profiled using lectin blotting. The fractions containing the post-ER pre-Golgi intermediates are found to contain a subset of N-linked α-mannose glycans that bind the lectins Galanthus nivalis agglutinin (GNA), Pisum sativum agglutinin (PSA), and Lens culinaris agglutinin (LCA) but not lectins binding Golgi-modified glycans.

View Article and Find Full Text PDF

Background: Lamins are intermediate filament proteins that form a major component of the nuclear lamina, a protein complex at the surface of the inner nuclear membrane. Numerous clinically diverse conditions, termed laminopathies, have been found to result from mutation of LMNA. In contrast, coding or loss of function mutations of LMNB1, encoding lamin B1, have not been identified in human disease.

View Article and Find Full Text PDF

Patients with cobalt chrome (CoCr) metal-on-metal (MOM) implants may be exposed to a wide size range of metallic nanoparticles as a result of wear. In this study we have characterised the biological responses of human fibroblasts to two types of synthetically derived CoCr particles [(a) from a tribometer (30 nm) and (b) thermal plasma technology (20, 35, and 80 nm)] in vitro, testing their dependence on nanoparticle size or the generation of oxygen free radicals, or both. Metal ions were released from the surface of nanoparticles, particularly from larger (80 nm) particles generated by thermal plasma technology.

View Article and Find Full Text PDF

Neural tube defects (NTDs), including spina bifida and anencephaly, are common birth defects whose complex multigenic causation has hampered efforts to delineate their molecular basis. The effect of putative modifier genes in determining NTD susceptibility may be investigated in mouse models, particularly those that display partial penetrance such as curly tail, a strain in which NTDs result from a hypomorphic allele of the grainyhead-like-3 gene. Through proteomic analysis, we found that the curly tail genetic background harbours a polymorphic variant of lamin B1, lacking one of a series of nine glutamic acid residues.

View Article and Find Full Text PDF

Lipoprotein lipase (LPL) is secreted into the interstitial spaces by adipocytes and myocytes but then must be transported to the capillary lumen by GPIHBP1, a glycosylphosphatidylinositol-anchored protein of capillary endothelial cells. The mechanism by which GPIHBP1 and LPL move across endothelial cells remains unclear. We asked whether the transport of GPIHBP1 and LPL across endothelial cells was uni- or bidirectional.

View Article and Find Full Text PDF

Amyloid formation and accumulation is a hallmark of protein misfolding diseases and is associated with diverse pathologies including type II diabetes and Alzheimer's disease (AD). In vitro, amyloidogenesis is widely studied in conditions that do not simulate the crowded and viscous in vivo environment. A high volume fraction of most biological fluids is occupied by various macromolecules, a phenomenon known as macromolecular crowding.

View Article and Find Full Text PDF

Regulatory T (Treg) cells are critically important for the maintenance of immunological tolerance. Both centrally arising natural nTreg cells and those emerging in the periphery in response to TGF-β, iTreg cells, play a role in the control of unwanted immune responses. Treg cells adopt multiple mechanisms to inhibit effector T cells, yet it is unclear whether these mechanisms are shared by nTreg cells and iTreg cells alike.

View Article and Find Full Text PDF

The aggregation of proteins or peptides into amyloid fibrils is a hallmark of protein misfolding diseases (e.g., Alzheimer's disease) and is under intense investigation.

View Article and Find Full Text PDF