Purpose: Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that is essential for the survival and immune sequestration of cancer cells. We conducted a phase 1 study of TTI‑101, a first-in-class, selective small-molecule inhibitor of STAT3, in patients with advanced metastatic cancer.
Patients And Methods: Patients were treated with TTI-101 orally twice daily in 28-day cycles at 4 dose levels (DLs): 3.
Background And Aims: Inflammatory bowel disease (IBD) predisposes to colorectal cancer (CRC). In the current studies, we used the dextran sodium sulfate (DSS) murine model of colitis, which is widely used in preclinical studies, to determine the contribution of STAT3 to IBD. STAT3 has two isoforms: (STAT3 α; which has pro-inflammatory and anti-apoptotic functions, and STAT3β; which attenuates the effects of STAT3α).
View Article and Find Full Text PDFCrohn's disease (CD), is an inflammatory bowel disease that can affect any part of the gastro-intestinal tract (GI) and is associated with an increased risk of gastro-intestinal cancer. In the current study, we determined the role of genetic and small-molecule modulation of STAT3 in a mouse model of CD. STAT3 has 2 isoforms (α, β) which are expressed in most cells in a 4:1 ratio (α: β).
View Article and Find Full Text PDFSTAT3 mutations, predominantly in the DNA-binding domain (DBD) and Src-homology 2 domain (SH2D), cause rare cases of immunodeficiency, malignancy, and autoimmunity. The exact mechanisms by which these mutations abrogate or enhance STAT3 function are not completely understood. Here, we examined how loss-of-function (LOF) and gain-of-function (GOF) STAT3 mutations within the DBD and SH2D affect monomer and homodimer protein stability as well as their effect on key STAT3 activation events, including recruitment to phosphotyrosine (pY) sites within peptide hormone receptors, tyrosine phosphorylation at Y705, dimerization, nuclear translocation, and DNA binding.
View Article and Find Full Text PDFTrans Am Clin Climatol Assoc
October 2022
Signal transducer and activator of transcription (STAT) 3 has been assigned to the group of "undruggable" disease-causing proteins, despite its containing a Src-homology (SH) 2 domain, a potential Achilles' heel that has eluded successful targeting by academic and pharmaceutical groups over the past 30 years. Based on mutational and modeling studies, our group developed a unique virtual ligand screening strategy targeting the STAT3 SH2 domain that was coupled to robust biochemical and cellular assays and structure-based medicinal chemistry and led to the identification of TTI-101. TTI-101 represents one of the most advanced, direct, small-molecule inhibitors of an SH2 domain-containing, disease-causing protein in clinical development.
View Article and Find Full Text PDFSignal Transducer and Activator of Transcription (STAT) 3 emerged rapidly as a high-value target for treatment of cancer. However, small-molecule STAT3 inhibitors have been slow to enter the clinic due, in part, to serious adverse events (SAE), including lactic acidosis and peripheral neuropathy, which have been attributed to inhibition of STAT3's mitochondrial function. Our group developed TTI-101, a competitive inhibitor of STAT3 that targets the receptor pY705-peptide binding site within the Src homology 2 (SH2) domain to block its recruitment and activation.
View Article and Find Full Text PDFEfforts to develop STAT3 inhibitors have focused on its SH2 domain starting with short phosphotyrosylated peptides based on STAT3 binding motifs, e.g. pYLPQTV within gp130.
View Article and Find Full Text PDFLoss of muscle proteins increases the morbidity and mortality of patients with chronic kidney disease (CKD), and there are no reliable preventive treatments. We uncovered a STAT3/CCAAT-enhancer-binding protein-δ to myostatin signaling pathway that activates muscle protein degradation in mice with CKD or cancer; we also identified a small-molecule inhibitor of STAT3 (TTI-101) that blocks this pathway. To evaluate TTI-101 as a treatment for CKD-induced cachexia, we measured TTI-101 pharmacokinetics and pharmacodynamics in control and CKD rats that were orally administered TTI-101or its diluent.
View Article and Find Full Text PDFRecurrence and drug resistance are major challenges in the treatment of acute myeloid leukemia (AML) that spur efforts to identify new clinical targets and active agents. STAT3 has emerged as a potential target in resistant AML, but inhibiting STAT3 function has proven challenging. This paper describes synthetic studies and biological assays for a naphthalene sulfonamide inhibitor class of molecules that inhibit G-CSF-induced STAT3 phosphorylation in cellulo and induce apoptosis in AML cells.
View Article and Find Full Text PDFBefore it was molecularly cloned in 1994, acute-phase response factor or signal transducer and activator of transcription (STAT)3 was the focus of intense research into understanding the mammalian response to injury, particularly the acute-phase response. Although known to be essential for liver production of acute-phase reactant proteins, many of which augment innate immune responses, molecular cloning of acute-phase response factor or STAT3 and the research this enabled helped establish the central function of Janus kinase (JAK) family members in cytokine signaling and identified a multitude of cytokines and peptide hormones, beyond interleukin-6 and its family members, that activate JAKs and STAT3, as well as numerous new programs that their activation drives. Many, like the acute-phase response, are adaptive, whereas several are maladaptive and lead to chronic inflammation and adverse consequences, such as cachexia, fibrosis, organ dysfunction, and cancer.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
May 2020
Cellular mechanisms causing insulin resistance (IR) in chronic kidney disease (CKD) are poorly understood. One potential mechanism is that CKD-induced inflammation activates the signal transducer and activator of transcription 3 (Stat3) in muscle. We uncovered increased p-Stat3 in muscles of mice with CKD or mice fed high-fat diet (HFD).
View Article and Find Full Text PDFHigh dose interleukin-2 (IL-2) is active against metastatic melanoma and renal cell carcinoma, but treatment-associated toxicity and expansion of suppressive regulatory T cells (Tregs) limit its use in patients with cancer. Bempegaldesleukin (NKTR-214) is an engineered IL-2 cytokine prodrug that provides sustained activation of the IL-2 pathway with a bias to the IL-2 receptor CD122 (IL-2Rβ). Here we assess the therapeutic impact and mechanism of action of NKTR-214 in combination with anti-PD-1 and anti-CTLA-4 checkpoint blockade therapy or peptide-based vaccination in mice.
View Article and Find Full Text PDFPurpose: Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are currently used in combination with endocrine therapy to treat advanced hormone receptor-positive, HER2-negative breast cancer. Although this treatment doubles time to progression compared with endocrine therapy alone, about 25%-35% of patients do not respond, and almost all patients eventually acquire resistance. Discerning the mechanisms of resistance to CDK4/6 inhibition is crucial in devising alternative treatment strategies.
View Article and Find Full Text PDFSignal transducer and activator of transcription (STAT) 3 plays a central role in the host response to injury. It is activated rapidly within cells by many cytokines, most notably those in the IL-6 family, leading to pro-proliferative and pro-survival programs that assist the host in regaining homeostasis. With persistent activation, however, chronic inflammation and fibrosis ensue, leading to a number of debilitating diseases.
View Article and Find Full Text PDFCD40 agonists bind the CD40 molecule on antigen-presenting cells and activate them to prime tumor-specific CD8 T cell responses. Here, we study the antitumor activity and mechanism of action of a nonreplicating adenovirus encoding a chimeric, membrane-bound CD40 ligand (ISF35). Intratumoral administration of ISF35 in subcutaneous B16 melanomas generates tumor-specific, CD8 T cells that express PD-1 and suppress tumor growth.
View Article and Find Full Text PDFThe incidence of hepatocellular carcinoma is increasing in the United States, and liver cancer is the second leading cause of cancer-related mortality worldwide. Nonalcoholic steatohepatitis (NASH) is becoming an important risk for hepatocellular carcinoma, and most patients with hepatocellular carcinoma have underlying liver cirrhosis and compromised liver function, which limit treatment options. Thus, novel therapeutic strategies to prevent or treat hepatocellular carcinoma in the context of NASH and cirrhosis are urgently needed.
View Article and Find Full Text PDFAutosomal dominant hyper-IgE syndrome (AD-HIES) is caused by dominant-negative mutations in STAT3; however, the molecular basis for mutant STAT3 allele dysfunction is unclear and treatment remains supportive. We hypothesized that AD-HIES mutations decrease STAT3 protein stability and that mutant STAT3 activity can be improved by agents that increase chaperone protein activity. We used computer modeling to characterize the effect of STAT3 mutations on protein stability.
View Article and Find Full Text PDFAML1-ETO is the translational product of a chimeric gene created by the stable chromosome translocation t (8;21)(q22;q22). It causes acute myeloid leukemia (AML) by dysregulating the expression of genes critical for myeloid cell development and differentiation and recently has been reported to bind multiple subunits of the mammalian cytosolic chaperonin TRiC (or CCT), primarily through its DNA binding domain (AML1-175). Through these interactions, TRiC plays an important role in the synthesis, folding, and activity of AML1-ETO.
View Article and Find Full Text PDFUpon growth factor stimulation or in some EGFR mutant cancer cells, PKM2 translocates into the nucleus to induce glycolysis and cell growth. Here, we report that nuclear PKM2 binds directly to poly-ADP ribose, and this PAR-binding capability is critical for its nuclear localization. Accordingly, PARP inhibition prevents nuclear retention of PKM2 and therefore suppresses cell proliferation and tumor growth.
View Article and Find Full Text PDFBackground: Hepatitis C virus (HCV) infection is associated with hepatocellular carcinoma and non-Hodgkin's lymphoma. In 2009, MD Anderson established the first US clinic for treating HCV-infected cancer patients, where we observed an unexpectedly large number of patients with head and neck cancers (HNCs). We sought to determine whether HCV is associated with HNCs.
View Article and Find Full Text PDFWhile STAT3 has been validated as a target for treatment of many cancers, including head and neck squamous cell carcinoma (HNSCC), a STAT3 inhibitor is yet to enter the clinic. We used the scaffold of C188, a small-molecule STAT3 inhibitor previously identified by us, in a hit-to-lead program to identify C188-9. C188-9 binds to STAT3 with high affinity and represents a substantial improvement over C188 in its ability to inhibit STAT3 binding to its pY-peptide ligand, to inhibit cytokine-stimulated pSTAT3, to reduce constitutive pSTAT3 activity in multiple HNSCC cell lines, and to inhibit anchorage dependent and independent growth of these cells.
View Article and Find Full Text PDF