Publications by authors named "David J Stokell"

Many oncology antibody-drug conjugates (ADCs) have failed to demonstrate efficacy in clinic because of dose-limiting toxicity caused by uptake into healthy tissues. We developed an approach that harnesses ADC affinity to broaden the therapeutic index (TI) using two anti-mesenchymal-epithelial transition factor (MET) monoclonal antibodies (mAbs) with high affinity (HAV) or low affinity (LAV) conjugated to monomethyl auristatin E (MMAE). The estimated TI for LAV-ADC was at least 3 times greater than the HAV-ADC.

View Article and Find Full Text PDF

Nanospray time-of-flight mass spectrometry has been used to study the assembly of the heptamer of the Escherichia coli cochaperonin protein GroES, a system previously described as a monomer-heptamer equilibrium. In addition to the monomers and heptamers, we have found measurable amounts of dimers and hexamers, the presence of which suggests the following mechanism for heptamer assembly: 2 Monomers <--> Dimer; 3 Dimers <--> Hexamer; Hexamer + Monomer <--> Heptamer. Equilibrium constants for each of these steps, and an overall constant for the Monomer <--> Heptamer equilibrium, have been estimated from the data.

View Article and Find Full Text PDF

The citrate synthase of Escherichia coli is an example of a Type II citrate synthase, a hexamer that is subject to allosteric inhibition by NADH. In previous crystallographic work, we defined the NADH binding sites, identifying nine amino acids whose side chains were proposed to make hydrogen bonds with the NADH molecule. Here, we describe the functional properties of nine sequence variants, in which these have been replaced by nonbonding residues.

View Article and Find Full Text PDF

Study of the hexameric and allosterically regulated citrate synthases (type II CS) provides a rare opportunity to gain not only an understanding of a novel allosteric mechanism but also insight into how such properties can evolve from an unregulated structural platform (the dimeric type I CS). To address both of these issues, we have determined the structure of the complex of NADH (a negative allosteric effector) with the F383A variant of type II Escherichia coli CS. This variant was chosen because its kinetics indicate it is primarily in the T or inactive allosteric conformation, the state that strongly binds to NADH.

View Article and Find Full Text PDF