Publications by authors named "David J Salant"

Article Synopsis
  • Complement-mediated diseases can be treated using specific inhibitors, but traditional systemic approaches may increase infection risk and have limited efficacy due to high levels of complement in circulation.
  • Researchers developed a new therapy, an antibody fusion protein (C3d-mAb-2fH), that targets complement activity directly in affected tissues rather than systemic circulation, improving localized treatment.
  • Experiments show that this approach effectively inhibits complement in tissue and has demonstrated positive results in models for skin and kidney diseases without causing systemic side effects.
View Article and Find Full Text PDF

Complement activation has long been recognized as a central feature of membranous nephropathy (MN). Evidence for its role has been derived from the detection of complement products in biopsy tissue and urine from patients with MN and from mechanistic studies primarily based on the passive Heymann nephritis model. Only recently, more detailed insights into the exact mechanisms of complement activation and effector pathways have been gained from patient data, animal models, and in vitro models based on specific target antigens relevant to the human disease.

View Article and Find Full Text PDF

Podocytes and parietal epithelial cells (PECs) are among the few principal cell types within the kidney glomerulus, the former serving as a crucial constituent of the kidney filtration barrier and the latter representing a supporting epithelial layer that adorns the inner wall of Bowman's capsule. Podocytes and PECs share a circumscript developmental lineage that only begins to diverge during the S-shaped body stage of nephron formation-occurring immediately before the emergence of the fully mature nephron. These two cell types, therefore, share a highly conserved gene expression program, evidenced by recently discovered intermediate cell types occupying a distinct spatiotemporal gene expression zone between podocytes and PECs.

View Article and Find Full Text PDF

FOXD1+ cell-derived stromal cells give rise to pericytes and fibroblasts that support the kidney vasculature and interstitium but are also major precursors of myofibroblasts. ZEB2 is a SMAD-interacting transcription factor that is expressed in developing kidney stromal progenitors. Here we show that Zeb2 is essential for normal FOXD1+ stromal progenitor development.

View Article and Find Full Text PDF

Podocyte loss triggering aberrant activation and proliferation of parietal epithelial cells (PECs) is a central pathogenic event in proliferative glomerulopathies. Podocyte-specific Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor, is essential for maintaining podocyte homeostasis and PEC quiescence. Using mice with podocyte-specific knockdown of Klf4, we conducted glomerular RNA-sequencing, tandem mass spectrometry, and single-nucleus RNA-sequencing to identify cell-specific transcriptional changes that trigger PEC activation due to podocyte loss.

View Article and Find Full Text PDF

Introduction: Focal segmental glomerulosclerosis (FSGS) is characterized by proteinuria and a histologic pattern of glomerular lesions of diverse etiology that share features including glomerular scarring and podocyte foot process effacement. Roundabout guidance receptor 2 (ROBO2)/slit guidance ligand 2 (SLIT2) signaling destabilizes the slit diaphragm and reduces podocyte adhesion to the glomerular basement membrane (GBM). Preclinical studies suggest that inhibition of glomerular ROBO2/SLIT2 signaling can stabilize podocyte adhesion and reduce proteinuria.

View Article and Find Full Text PDF

Primary membranous nephropathy (pMN) is a leading cause of nephrotic syndrome in adults. In most cases, this autoimmune kidney disease is associated with autoantibodies against the M-type phospholipase A2 receptor (PLA2R1) expressed on kidney podocytes, but the mechanisms leading to glomerular damage remain elusive. Here, we developed a cell culture model using human podocytes and found that anti-PLA2R1-positive pMN patient sera or isolated IgG4, but not IgG4-depleted sera, induced proteolysis of the 2 essential podocyte proteins synaptopodin and NEPH1 in the presence of complement, resulting in perturbations of the podocyte cytoskeleton.

View Article and Find Full Text PDF

New treatments, new understanding, and new approaches to translational research are transforming the outlook for patients with kidney diseases. A number of new initiatives dedicated to advancing the field of nephrology-from value-based care to prize competitions-will further improve outcomes of patients with kidney disease. Because of individual nephrologists and kidney organizations in the United States, such as the American Society of Nephrology, the National Kidney Foundation, and the Renal Physicians Association, and international nephrologists and organizations, such as the International Society of Nephrology and the European Renal Association-European Dialysis and Transplant Association, we are beginning to gain traction to invigorate nephrology to meet the pandemic of global kidney diseases.

View Article and Find Full Text PDF

Lupus nephritis (LN) is a major contributor to morbidity and mortality in lupus patients, but the mechanisms of kidney damage remain unclear. In this study, we introduce, to our knowledge, novel models of LN designed to resemble the polygenic nature of human lupus by embodying three key genetic alterations: the interval leading to anti-chromatin autoantibodies; , leading to defective clearance of apoptotic cells; and either or , leading to low complement levels. We report that proliferative glomerulonephritis arose only in the presence of all three abnormalities (i.

View Article and Find Full Text PDF

Roundabout guidance receptor 2 (ROBO2) plays an important role during early kidney development. ROBO2 is expressed in podocytes, inhibits nephrin-induced actin polymerization, down-regulates nonmuscle myosin IIA activity, and destabilizes kidney podocyte adhesion. However, the role of ROBO2 during kidney injury, particularly in mature podocytes, is not known.

View Article and Find Full Text PDF

The universal pathologic features implicated in the progression of chronic kidney disease (CKD) are interstitial fibrosis and tubular atrophy (IFTA). Current methods of estimating IFTA are slow, labor-intensive and fraught with variability and sampling error, and are not quantitative. As such, there is pressing clinical need for a less-invasive and faster method that can quantitatively assess the degree of IFTA.

View Article and Find Full Text PDF

Crescentic glomerulonephritis is an inflammatory condition characterized by rapid deterioration of kidney function. Previous studies of crescentic glomerulonephritis have focused on immune activation in the kidney. However, the role of fibroblastic reticular cells, which reside in the stromal compartment of the kidney lymph node, has not been studied in this condition.

View Article and Find Full Text PDF
Unmet challenges in membranous nephropathy.

Curr Opin Nephrol Hypertens

January 2019

Purpose Of Review: Despite major advances in since the discovery of the phospholipase A2 receptor (PLA2R) as the major autoantigen on podocytes in primary membranous nephropathy, there are still several unanswered questions as highlighted here.

Recent Findings: A substantial body of literature, included in more than 680 articles since 2009, has documented genetic susceptibility to primary membranous nephropathy involving PLA2R1 and class II MHC alleles, the clinical value of anti-PLA2R assays, the significance of epitope spreading of the anti-PLA2R response, discovery of thrombospondin type I domain-containing 7A (THSD7A) as a minor antigen in primary membranous nephropathy, and the ability to transfer disease into mice by infusion of anti-THSD7A sera. However, the normal physiology and pathophysiology of PLA2R and THSD7A in podocytes is still unknown and the genetic influence on disease susceptibility is unexplained.

View Article and Find Full Text PDF

Risk (or susceptibility) alleles for primary membranous nephropathy exist within the DQ and DR loci of the human leukocyte antigen (HLA) region of chromosome 6. The discussed study identifies a novel allele, HLA DRB1*1502, in a Han Chinese cohort that acts as a modifier allele by associating not with the phenotype of membranous nephropathy, but rather with the severity of disease. This commentary addresses the potential biologic aspects of these new data.

View Article and Find Full Text PDF

Pathologic glomerular epithelial cell (GEC) hyperplasia is characteristic of both rapidly progressive glomerulonephritis (RPGN) and subtypes of focal segmental glomerulosclerosis (FSGS). Although initial podocyte injury resulting in activation of STAT3 signals GEC proliferation in both diseases, mechanisms regulating this are unknown. Here, we show that the loss of Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor, enhances GEC proliferation in both RPGN and FSGS due to dysregulated STAT3 signaling.

View Article and Find Full Text PDF

Acute glomerulonephritis is characterized by rapid glomerular neutrophil recruitment, proteinuria, and glomerular hypercellularity. The current study tested the hypothesis that the release of neutrophil granule contents plays a role in both the loss of filtration barrier leading to proteinuria and the increase in glomerular cells. Inhibition of neutrophil exocytosis with a peptide inhibitor prevented proteinuria and attenuated podocyte and endothelial cell injury but had no effect on glomerular hypercellularity in an experimental acute glomerulonephritis model in mice.

View Article and Find Full Text PDF
Article Synopsis
  • - Chronic kidney damage is typically assessed by looking at fibrosis and tubular atrophy in renal biopsy samples, but there’s a need for better methods to evaluate kidney disease severity.
  • - Researchers utilized deep learning techniques, specifically convolutional neural networks (CNN), to analyze biopsy images from 171 patients and correlate them with various clinical indicators and long-term kidney survival.
  • - The study found that CNN models significantly outperformed traditional scoring methods (pathologist-estimated fibrosis score) in predicting kidney disease stages and patient outcomes, suggesting deep learning could enhance routine kidney damage assessments.
View Article and Find Full Text PDF

Primary renal tubulointerstitial disease resulting from proximal tubule antigen-specific antibodies and immune complex formation has not been well characterized in humans. We report a cohort of patients with a distinct, underappreciated kidney disease characterized by kidney antibrush border antibodies and renal failure (ABBA disease). We identified ten patients with ABBA disease who had a combination of proximal tubule damage, IgG-positive immune deposits in the tubular basement membrane, and circulating antibodies reactive with normal human kidney proximal tubular brush border.

View Article and Find Full Text PDF

Transcription factor NF-κB regulates expression of numerous genes that control inflammation and is activated in glomerular cells in glomerulonephritis (GN). We previously identified genetic variants for a NF-κB regulatory, ubiquitin-binding protein ABIN1 as risk factors for GN in systemic autoimmunity. The goal was to define glomerular inflammatory events controlled by ABIN1 function in GN.

View Article and Find Full Text PDF

Proliferation of glomerular epithelial cells, including podocytes, is a key histologic feature of crescentic glomerulonephritis. We previously found that retinoic acid (RA) inhibits proliferation and induces differentiation of podocytes by activating RA receptor-α (RARα) in a murine model of HIV-associated nephropathy. Here, we examined whether RA would similarly protect podocytes against nephrotoxic serum-induced crescentic glomerulonephritis and whether this effect was mediated by podocyte RARα.

View Article and Find Full Text PDF

Thrombotic microangiopathy (TMA) is characterized by the presence of microangiopathic hemolytic anemia and thrombocytopenia along with organ dysfunction, and pathologically, by the presence of microthrombi in multiple microvascular beds. Delays in diagnosis and initiation of therapy are common due to the low incidence, variable presentation, and poor awareness of these diseases, underscoring the need for interdisciplinary approaches to clinical care for TMA. We describe a new approach to improve clinical management via a TMA team that originally stemmed from an Affinity Research Collaborative team focused on thrombosis and hemostasis.

View Article and Find Full Text PDF

The repulsive guidance cue SLIT2 and its receptor ROBO2 are required for kidney development and podocyte foot process structure, but the SLIT2/ROBO2 signaling mechanism regulating podocyte function is not known. Here we report that a potentially novel signaling pathway consisting of SLIT/ROBO Rho GTPase activating protein 1 (SRGAP1) and nonmuscle myosin IIA (NMIIA) regulates podocyte adhesion downstream of ROBO2. We found that the myosin II regulatory light chain (MRLC), a subunit of NMIIA, interacts directly with SRGAP1 and forms a complex with ROBO2/SRGAP1/NMIIA in the presence of SLIT2.

View Article and Find Full Text PDF

Primary glomerulocystic kidney disease is a special form of renal cystic disorder characterized by Bowman's space dilatation in the absence of tubular cysts. ZEB2 is a SMAD-interacting transcription factor involved in Mowat-Wilson syndrome, a congenital disorder with an increased risk for kidney anomalies. Here we show that deletion of Zeb2 in mesenchyme-derived nephrons with either Pax2-cre or Six2-cre causes primary glomerulocystic kidney disease without tubular cysts in mice.

View Article and Find Full Text PDF