The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated.
View Article and Find Full Text PDFVoltage-gated ion (K(+), Na(+), Ca(2+)) channels contain a pore domain (PD) surrounded by four voltage sensing domains (VSD). Each VSD is made up of four transmembrane helices, S1-S4. S4 contains 6-7 positively charged residues (arginine/lysine) separated two hydrophobic residues, whereas S1-S3 contribute to two negatively charged clusters.
View Article and Find Full Text PDFThe hERG potassium channel is a member of the voltage gated potassium (Kv) channel family, comprising a pore domain and four voltage sensing domains (VSDs). Like other Kv channels, the VSD senses changes in membrane voltage and transmits the signal to gates located in the pore domain; the gates open at positive potentials (activation) and close at negative potentials, thereby controlling the ion flux. hERG, however, differs from other Kv channels in that it is activated slowly but inactivated rapidly - a property that is crucial for the role it plays in the repolarization of the cardiac action potential.
View Article and Find Full Text PDFVoltage-gated potassium channels are six-transmembrane (S1-S6) proteins that form a central pore domain (4 x S5-S6) surrounded by four voltage sensor domains (S1-S4), which detect changes in membrane voltage and control pore opening. Upon depolarization, the S4 segments move outward carrying charged residues across the membrane field, thereby leading to the opening of the pore. The mechanism of S4 motion is controversial.
View Article and Find Full Text PDFVoltage-gated potassium channels are transmembrane proteins made up of four subunits, each comprising six transmembrane (S1-S6) segments. S1-S4 form the voltage-sensing domain and S5-S6 the pore domain with its central pore. The sensor domain detects membrane depolarization and transmits the signal to the activation gates situated in the pore domain, thereby leading to channel opening.
View Article and Find Full Text PDF