We present gridded 8 km-resolution data products of the estimated stem density, basal area, and biomass of tree taxa at Euro-American settlement of the midwestern United States during the middle to late 19th century for the states of Minnesota, Wisconsin, Michigan, Illinois, and Indiana. The data come from settlement-era Public Land Survey (PLS) data (ca. 0.
View Article and Find Full Text PDFForest development is a complex phenomenon which, for the number of actors involved and the response time expressed by forests, is difficult to understand and explore. Forests in Italy, as in several areas of Europe, are experiencing intensive management and recently, an increasing impact by ungulates. The effects on forest development of these two disturbances combined are difficult to predict, and consequently to be properly managed.
View Article and Find Full Text PDFExpanding the scope of landscape genetics beyond the level of single species can help to reveal how species traits influence responses to environmental change. Multispecies studies are particularly valuable in highly threatened taxa, such as turtles, in which the impacts of anthropogenic change are strongly influenced by interspecific differences in life history strategies, habitat preferences and mobility. We sampled approximately 1500 individuals of three co-occurring turtle species across a gradient of habitat change (including varying loss of wetlands and agricultural conversion of upland habitats) in the Midwestern USA.
View Article and Find Full Text PDFBackground: EuroAmerican land-use and its legacies have transformed forest structure and composition across the United States (US). More accurate reconstructions of historical states are critical to understanding the processes governing past, current, and future forest dynamics. Here we present new gridded (8x8km) reconstructions of pre-settlement (1800s) forest composition and structure from the upper Midwestern US (Minnesota, Wisconsin, and most of Michigan), using 19th Century Public Land Survey System (PLSS), with estimates of relative composition, above-ground biomass, stem density, and basal area for 28 tree types.
View Article and Find Full Text PDFWe present a gridded 8 km-resolution data product of the estimated composition of tree taxa at the time of Euro-American settlement of the northeastern United States and the statistical methodology used to produce the product from trees recorded by land surveyors. Composition is defined as the proportion of stems larger than approximately 20 cm diameter at breast height for 22 tree taxa, generally at the genus level. The data come from settlement-era public survey records that are transcribed and then aggregated spatially, giving count data.
View Article and Find Full Text PDFPerennial cellulosic feedstocks may have potential to reduce life-cycle greenhouse gas (GHG) emissions by offsetting fossil fuels. However, this potential depends on meeting a number of important criteria involving land cover change, including avoiding displacement of agricultural production, not reducing uncultivated natural lands that provide biodiversity habitat and other valued ecosystem services, and avoiding the carbon debt (the amount of time needed to repay the initial carbon loss) that accompanies displacing natural lands. It is unclear whether recent agricultural expansion in the United States competes with lands potentially suited for bioenergy feedstocks.
View Article and Find Full Text PDFThe effects of forest management on soil carbon (C) and nitrogen (N) dynamics vary by harvest type and species. We simulated long-term effects of bole-only harvesting of aspen (Populus tremuloides) on stand productivity and interaction of CN cycles with a multiple model approach. Five models, Biome-BGC, CENTURY, FORECAST, LANDIS-II with Century-based soil dynamics, and PnET-CN, were run for 350 yr with seven harvesting events on nutrient-poor, sandy soils representing northwestern Wisconsin, United States.
View Article and Find Full Text PDFThe extent to which current landscapes deviate from the historical range of natural variability (RNV) is a common means of defining and ranking regional conservation targets. However, climate-induced shifts in forest composition may render obsolete restoration strategies and conservation targets based on historic climate conditions and disturbance regimes. We used a spatially explicit forest ecosystem model, LANDIS-II, to simulate the interaction of climate change and forest management in northeastern Minnesota, USA.
View Article and Find Full Text PDFHistorical land use can influence forest species composition and structure for centuries after direct use has ceased. In Wisconsin, USA, Euro-American settlement in the mid- to late 1800s was accompanied by widespread logging, agricultural conversion, and fire suppression. To determine the maximum magnitude of change in forest ecosystems at the height of the agricultural period and the degree of recovery since that time, we assessed changes in forest species composition and structure among the (1) mid-1800s, at the onset of Euro-American settlement; (2) 1930s, at the height of the agricultural period; and (3) 2000s, following forest regrowth.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2009
One-third of net CO(2) emissions to the atmosphere since 1850 are the result of land-use change, primarily from the clearing of forests for timber and agriculture, but quantifying these changes is complicated by the lack of historical data on both former ecosystem conditions and the extent and spatial configuration of subsequent land use. Using fine-resolution historical survey records, we reconstruct pre-EuroAmerican settlement (1850s) forest carbon in the state of Wisconsin, examine changes in carbon after logging and agricultural conversion, and assess the potential for future sequestration through forest recovery. Results suggest that total above-ground live forest carbon (AGC) fell from 434 TgC before settlement to 120 TgC at the peak of agricultural clearing in the 1930s and has since recovered to approximately 276 TgC.
View Article and Find Full Text PDFNational networks detect multi-state trends in element deposition using direct measurement methods. Biomonitoring techniques have been used to examine deposition in local areas and around point sources. We sought to determine the efficacy of a moss bag technique to detect element deposition trends on a mid-range (state) scale, and to compare these results with those of the National Acid Deposition Program/National Trends Network (NADP/NTN, 1999).
View Article and Find Full Text PDFDynamic zoning (systematic alteration in the spatial and temporal allocation of even-aged forest management practices) has been proposed as a means to change the spatial pattern of timber harvest across a landscape to maximize forest interior habitat while holding timber harvest levels constant. Simulation studies have established that dynamic zoning strategies produce larger tracts of interior, closed canopy forest, thus increasing the value of these landscapes for interior-dependent wildlife. We used the simulation model LANDIS to examine how the implementation of a dynamic zoning strategy would change trajectories of ecological succession in the Great Divide Ranger District of the Chequamegon-Nicolet National Forest in northern Wisconsin over 500 years.
View Article and Find Full Text PDFWe used geographic information systems (GIS) to analyze the structure of a second-growth forest landscape (9600 ha) that contains scattered old-growth patches. We compared this landscape to a nearby, unaltered old-growth landscape on comparable landforms and soils to assess the effects of human activity on forest spatial pattern. Our objective is to determine if characteristic landscape structural patterns distinguish the primary old-growth forest landscape from the disturbed landscape.
View Article and Find Full Text PDF