Publications by authors named "David J Mathre"

This paper describes the use of spin centrifugation-dialysis (SCD) for small-scale concentration/purification of siRNA-lipid complexes designed for use as therapeutic agents for gene silencing. SCD consists of a two-step method for concentration, filtration and buffer exchange of lipid nanoparticles (LNP) to provide a homogeneous preparation suitable for injection. Here, we compare SCD with the more traditionally used tangential flow filtration (TFF), and demonstrate the physicochemical and biological comparability of LNPs produced with both methods.

View Article and Find Full Text PDF

We report the first case of a pharmaceutical cocrystal formed between an inorganic acid and an active pharmaceutical ingredient (API), which enabled us to develop a stable crystalline and bioavailable solid dosage form for pharmaceutical development where otherwise only unstable amorphous free form or salts could have been used.

View Article and Find Full Text PDF

Access to a key 3-aryl-delta-lactone intermediate in enantiopure form using preparative chiral chromatography allowed expedited preparation of an important drug discovery target. A preclinical drug discovery strategy that combines rapid route discovery with effective use of preparative chiral chromatography can result in significant savings of both time and labor.

View Article and Find Full Text PDF

In this study we investigate the correlations between the single crystal structure, the crystal habitat and morphology, and surface energetics of an investigational pharmaceutical compound. Crystal structure of this investigational pharmaceutical solid has been solved from single crystal X-ray analysis. Crystallographic data are as follows: triclinic, P1 (no.

View Article and Find Full Text PDF

An efficient asymmetric synthesis of a selective estrogen receptor modulator (SERM) that has a dihydrobenzoxathiin core structure bearing two stereogenic centers is reported. The stereogenic centers were established by an unprecedented chiral sulfoxide-directed stereospecific reduction of an alpha,beta-unsaturated sulfoxide to the saturated sulfide in one step. Studies to elucidate the mechanism for this reduction are reported.

View Article and Find Full Text PDF

Enantiomerically enriched, deuterated branched carbonates (Z)-(S)-PhCH(OCO(2)Me)-CH = CHD (1-D), (Z)-(R)-PhCH(OCO(2)Me)CH = CHD (2-D), and linear carbonate (E)-(S)-PhCH = CHCHD(OCO(2)Me) (3-D) were used as probes in the Mo-catalyzed asymmetric allylic alkylation with sodium dimethyl malonate, catalyzed by ligand-complex 11 derived from the mixed benzamide/picolinamide of (S,S)-transdiaminocyclohexane and (norbornadiene)Mo(CO)(4). The results of these studies, along with x-ray crystallography and solution NMR structural analysis of the pi-allyl intermediate, conclusively established the reaction proceeded by a retention-retention pathway. This mechanism contrasts with that defined for Pd-catalyzed allylic alkylations, which proceed by an inversion-inversion pathway.

View Article and Find Full Text PDF

Pure (Z)-enamines readily prepared from beta-ketoesters and amides using (S)-phenylglycine amide were hydrogenated with very high diastereoselectivities (up to 200:1) using heterogeneous catalysis. Hydrogenolytic cleavage of the (S)-phenylglycine amide afforded the corresponding chiral beta-aminoesters and amides. The high geometrical purity of the (Z)-enamine and a simple activation procedure for the PtO2 catalyst are essential in achieving high selectivity.

View Article and Find Full Text PDF

[reaction: see text] Activation of substituted 1,1-diarylmethanols as their corresponding toluenesulfonates and subsequent displacement with a range of carbon, nitrogen, oxygen, and sulfur nucleophiles proceeds in 81-96% yield. Enantiomerically enriched diarylmethanols 8a-c were activated and displaced with pyridine acetate enolate with complete stereochemical inversion at carbon to yield 1,1-diarylalkyl derivatives 10a-c without loss of optical purity.

View Article and Find Full Text PDF

A six-step preparation of thrombin inhibitor drug candidate 1 from pyrazinone 7 in 47% overall yield is described. The problem of low reactivity between weak amine nucleophile 4 and poor electrophile 3-bromopyrazinone 17 was overcome with the use of pyridinylthioimidate 27 in the presence of ZnCl(2) to afford adduct 3 in high yield. Several zinc complexes were characterized by solution and solid-state NMR and X-ray crystallographic analyses, and provided insight into the reaction mechanism.

View Article and Find Full Text PDF

An efficient stereoselective synthesis of the orally active NK(1) receptor antagonist Aprepitant is described. A direct condensation of N-benzyl ethanolamine with glyoxylic acid yielded a 2-hydroxy-1,4-oxazin-3-one which was activated as the corresponding trifluoroacetate. A Lewis acid mediated coupling with enantiopure (R)-1-(3,5-bis(trifluoromethyl)phenyl)ethan-1-ol afforded a 1:1 mixture of acetal diastereomers which was converted into a single isomer via a novel crystallization-induced asymmetric transformation.

View Article and Find Full Text PDF

The enantiomers of the stereolabile peroxisome proliferator-activated receptor (PPAR) agonist, 1, were isolated by preparative chiral chromatography and their absolute configuration established using a combination of chromatographic and NMR methods. Enantiomer interconversion was investigated under a variety of conditions, with rapid racemization being observed in most solvents, including all aqueous systems studied, irrespective of pH. Rapid racemization in both dog and human plasma was confirmed by chiral HPLC with MS detection.

View Article and Find Full Text PDF

Spectroscopic and crystallographic studies were undertaken to gain insight into the mechanism of the highly regio- and enantioselective allylic aklylation reaction catalyzed by molybdenum. The chiral ligand (L*) consisting of the mixed benzamide/picolinamide of (S,S,)-trans-1,2-diaminocyclohexane reacts with a typical Mo precatalyst, (norbornadiene)Mo(CO)4, to give a neutral complex L*Mo(CO)4 in which the ligand binds to the metal in a bidentate fashion through the pyridine and adjacent amide group. Reaction of this complex with the methyl carbonate of cinnamyl alcohol gives the corresponding pi-allyl complex L*(CO)2Mo(eta3-CH2=CH-CHPh).

View Article and Find Full Text PDF

L-733,725, a new immunosuppressant drug candidate, was prepared by a highly chemoselective alkylation of the macrolide ascomycin at the C32 hydroxy position with the imidazolyl trichloroacetimidate 16. The trichloroacetimidate-activated side chain 16 was prepared by an efficient four-step sequence in 42% overall yield. The high chemoselectivity in the alkylation of the C32 hydroxy group of the unprotected ascomycin was the result of the synergetic effects of the electron-donating protecting group on the imidazole 16, the polar, moderately basic solvent, and the strong acid catalyst.

View Article and Find Full Text PDF