Breastfeeding represents a strong selective factor for shaping the infant gut microbiota. Besides providing nutritional requirements for the infant, human milk is a key source of oligosaccharides, human milk oligosaccharides (HMOs), and diverse microbes in early life. This study aimed to evaluate the influence of human milk microbiota and oligosaccharides on the composition of infant faecal microbiota at one, three, and nine months postpartum.
View Article and Find Full Text PDFBMC Microbiol
June 2024
Background: 5-Fluorouracil (5-FU) is used as an antineoplastic agent in distinct cancer types. Increasing evidence suggests that the gut microbiota might modulate 5-FU efficacy and toxicity, potentially affecting the patient's prognosis. The current experimental study investigated 5-FU-induced microbiota alterations, as well as the potential of prebiotic fibre mixtures (M1-M4) to counteract these shifts.
View Article and Find Full Text PDFAntibiotic exposure disturbs the developing infant gut microbiota. The capacity of the gut microbiota to recover from this disturbance (resilience) depends on the type of antibiotic. In this study, infant gut microbiota was exposed to a combination of amoxicillin and clavulanate (amoxicillin/clavulanate) in an colon model (TIM-2) with fecal-derived microbiota from 1-month-old (1-M; a mixed-taxa community type) as well as 3-month-old (3-M; dominated community type) breastfed infants.
View Article and Find Full Text PDFBackground: Previous pre-clinical research has indicated that the intestinal microbiota can potentiate anti-tumour efficacy of capecitabine and that capecitabine treatment impacts intestinal microbiota composition and diversity. Using a longitudinal design, this study explores the associations between the intestinal microbiota and treatment response in patients with metastatic colorectal cancer (mCRC) during capecitabine treatment.
Patients And Methods: Patients with mCRC treated with capecitabine were prospectively enrolled in a multicentre cohort study.