Publications by authors named "David J Lunn"

Responsive hydrogels that undergo controlled shape changes in response to a range of stimuli are of interest for microscale soft robotic and biomedical devices. However, these applications require fabrication methods capable of preparing complex, heterogeneous materials. Here we report a new approach for making patterned, multi-material and multi-responsive hydrogels, on a micrometre to millimetre scale.

View Article and Find Full Text PDF

Inspired by nanotechnologies based on DNA strand displacement, herein we demonstrate that synthetic helical strand exchange can be achieved through tuning of poly(methyl methacrylate) (PMMA) triple-helix stereocomplexes. To evaluate the utility and robustness of helical strand exchange, stereoregular PMMA/polyethylene glycol (PEG) block copolymers capable of undergoing crystallization driven self-assembly via stereocomplex formation were prepared. Micelles with spherical or wormlike morphologies were formed by varying the molecular weight composition of the assembling components.

View Article and Find Full Text PDF

We report a simple and efficient transformation of thiol and thiocarbonylthio functional groups to bromides using stable and commercially available brominating reagents. This procedure allows for the quantitative conversion of a range of small molecule thiols (including primary, secondary and tertiary) to the corresponding bromides under mild conditions, as well as the facile chain-end modification of polystyrene (PS) homopolymers and block copolymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. Specifically, the direct chain-end bromination of PS prepared by RAFT was achieved, where the introduced terminal bromide remained active for subsequent modification or chain-extension using classical atom transfer radical polymerization (ATRP).

View Article and Find Full Text PDF

Square-planar platinum(II) complexes often stack cofacially to yield supramolecular fiber-like structures with interesting photophysical properties. However, control over fiber dimensions and the resulting colloidal stability is limited. We report the self-assembly of amphiphilic Pt(II) complexes with solubilizing ancillary ligands based on polyethylene glycol [PEG, where n = 16, 12, 7].

View Article and Find Full Text PDF

The capability to graft synthetic polymers onto the surfaces of live cells offers the potential to manipulate and control their phenotype and underlying cellular processes. Conventional grafting-to strategies for conjugating preformed polymers to cell surfaces are limited by low polymer grafting efficiency. Here we report an alternative grafting-from strategy for directly engineering the surfaces of live yeast and mammalian cells through cell surface-initiated controlled radical polymerization.

View Article and Find Full Text PDF

A highly efficient photomediated atom transfer radical polymerization protocol is reported for semi-fluorinated acrylates and methacrylates. Use of the commercially available solvent, 2-trifluoromethyl-2-propanol, optimally balances monomer, polymer, and catalyst solubility while eliminating transesterification as a detrimental side reaction. In the presence of UV irradiation and ppm concentrations of copper(II) bromide and Me-TREN (TREN = tris(2-aminoethyl amine)), semi-fluorinated monomers with side chains containing between three and 21 fluorine atoms readily polymerize under controlled conditions.

View Article and Find Full Text PDF

We report a metal-free strategy for the chain-end modification of RAFT polymers utilizing visible light. By turning the light source on or off, the reaction pathway in one pot can be switched between either complete desulfurization (hydrogen chain-end) or simple cleavage (thiol chain-end), respectively. The versatility of this process is exemplified by application to a wide range of polymer backbones under mild, quantitative conditions using commercial reagents.

View Article and Find Full Text PDF

Anisotropic nanoparticles prepared from block copolymers are of growing importance as building blocks for the creation of synthetic hierarchical materials. However, the assembly of these structural units is generally limited to the use of amphiphilic interactions. Here we report a simple, reversible coordination-driven hierarchical self-assembly strategy for the preparation of micron-scale fibres and macroscopic films based on monodisperse cylindrical block copolymer micelles.

View Article and Find Full Text PDF

Cylindrical block copolymer micelles have shown considerable promise in various fields of biomedical research. However, unlike spherical micelles and vesicles, control over their dimensions in biologically relevant solvents has posed a key challenge that potentially limits in depth studies and their optimization for applications. Here, we report the preparation of cylindrical micelles of length in the wide range of 70 nm to 1.

View Article and Find Full Text PDF

Although the solution self-assembly of block copolymers has enabled the fabrication of a broad range of complex, functional nanostructures, their precise manipulation and patterning remain a key challenge. Here we demonstrate that spherical and linear supermicelles, supramolecular structures held together by non-covalent solvophobic and coordination interactions and formed by the hierarchical self-assembly of block copolymer micelle and block comicelle precursors, can be manipulated, transformed and patterned with mediation by dynamic holographic assembly (optical tweezers). This allows the creation of new and stable soft-matter superstructures far from equilibrium.

View Article and Find Full Text PDF

The formation of high aspect ratio supramolecular polymeric nanofibers from square-planar platinum(II) complexes through Pt···Pt and π-π stacking interactions has been achieved with a small width (<15 nm), tunable length, and relatively narrow length distributions up to ca. 400 nm under conditions of kinetic control using small seed fibers as initiators.

View Article and Find Full Text PDF

The solution-phase self-assembly or "polymerization" of discrete colloidal building blocks, such as "patchy" nanoparticles and multicompartment micelles, is attracting growing attention with respect to the creation of complex hierarchical materials. This approach represents a versatile method with which to transfer functionality at the molecular level to the nano- and microscale, and is often accompanied by the emergence of new material properties. In this perspective we highlight selected recent examples of the self-assembly of anisotropic nanoparticles which exploit directional interactions introduced through their shape or surface chemistry to afford a variety of hierarchical materials.

View Article and Find Full Text PDF

Block copolymers (BCPs) with a short crystallizable poly(ferrocenyldimethylsilane) (PFS) core-forming block self-assemble in selective solvents to afford cylindrical micelles, the ends of which are active to further growth via a process termed living crystallization-driven self-assembly (CDSA). We now report studies of the CDSA of a series of crystalline-brush BCPs with C6 (BCP(6)), C12 (BCP(12)), and C18 (BCP(18)) n-alkyl branches that were prepared by the thiol-ene functionalization of PFS-b-PMVS (PMVS = poly(methylvinylsiloxane)). Although the increased n-alkyl brush length of BCP(12) and BCP(18) hindered micelle growth, the increased intercoronal chain repulsion could be alleviated by their coassembly with linear PFS-b-PMVS.

View Article and Find Full Text PDF

Emerging strategies based on the self-assembly of block copolymers have recently enabled the bottom-up fabrication of nanostructured materials with spatially distinct functional regions. Concurrently, a drive for further miniaturization in applications such as optics, electronics and diagnostic technology has led to intense interest in nanomaterials with well-defined patterns of emission colour. Using a series of fluorescent block copolymers and the crystallization-driven living self-assembly approach, we herein describe the synthesis of multicompartment micelles in which the emission of each segment can be controlled to produce colours throughout the visible spectrum.

View Article and Find Full Text PDF

Monodisperse fiber-like micelles with a crystalline π-conjugated polythiophene core with lengths up to ca. 700 nm were successfully prepared from the diblock copolymer poly(3-hexylthiophene)-block-polystyrene using a one-dimensional self-seeding technique. Addition of a polythiophene block copolymer with a different corona-forming block to the resulting nanofibers led to the formation of segmented B-A-B triblock co-micelles by crystallization-driven seeded growth.

View Article and Find Full Text PDF

With the aim of accessing colloidally stable, fiberlike, π-conjugated nanostructures of controlled length, we have studied the solution self-assembly of two asymmetric crystalline-coil, regioregular poly(3-hexylthiophene)-b-poly(2-vinylpyridine) (P3HT-b-P2VP) diblock copolymers, P3HT23-b-P2VP115 (block ratio=1:5) and P3HT44-b-P2VP115 (block ratio=ca. 1:3). The self-assembly studies were performed under a variety of solvent conditions that were selective for the P2VP block.

View Article and Find Full Text PDF

Solution self-assembly of the regioregular polythiophene-based block copolymer poly(3-hexylthiophene)-b-poly(dimethylsiloxane) yields cylindrical micelles with a crystalline P3HT core. Monodisperse nanocylinders of controlled length have been prepared via crystallization-driven self-assembly using seed micelles as initiators.

View Article and Find Full Text PDF

We illustrate the use of 'reversible jump' MCMC to automate the process of covariate selection in population PK/PD analyses. The output from such an approach can be used not only to determine the 'best' covariate model for each parameter, but also to formally measure the spread of uncertainty across all possible models, and to average inferences across a range of 'good' models. We examine the substantive impact of such model averaging compared to conditioning inferences on the 'best' model alone, and conclude that clinically significant differences between the two approaches can arise.

View Article and Find Full Text PDF

We present a range of modelling components designed to facilitate Bayesian analysis of genetic-association-study data. A key feature of our approach is the ability to combine different submodels together, almost arbitrarily, for dealing with the complexities of real data. In particular, we propose various techniques for selecting the "best" subset of genetic predictors for a specific phenotype (or set of phenotypes).

View Article and Find Full Text PDF

We adopted Bayesian analysis in combination with hierarchical (population) modelling to estimate simultaneously population and individual insulin sensitivity (SI) and glucose effectiveness (SG) with the minimal model of glucose kinetics using data collected during insulin-modified intravenous glucose tolerance test (IVGTT) and made comparison with the standard non-linear regression analysis. After fasting overnight, subjects with newly presenting Type II diabetes according to World Health Organization criteria (n =65; 53 males, 12 females; age, 54 +/- 9 years; body mass index, 30.4 +/- 5.

View Article and Find Full Text PDF

Markov chain Monte Carlo (MCMC) techniques have revolutionized the field of Bayesian statistics by enabling posterior inference for arbitrarily complex models. The now widely used WinBUGS software has, over the years, made the methodology accessible to a great many applied scientists, in all fields of research. Despite this, serious application of MCMC methods within the field of population PK/PD has been comparatively limited.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionc3q078m1e02tpmj7rngm74dthgjrqcej): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once