Publications by authors named "David J Levy-Booth"

Bacterial catabolic pathways have considerable potential as industrial biocatalysts for the valorization of lignin, a major component of plant-derived biomass. Here, we describe a pathway responsible for the catabolism of acetovanillone, a major component of several industrial lignin streams. GD02 was previously isolated for growth on acetovanillone.

View Article and Find Full Text PDF

Characterizing microorganisms and enzymes involved in lignin biodegradation in thermal ecosystems can identify thermostable biocatalysts. We integrated stable isotope probing (SIP), genome-resolved metagenomics, and enzyme characterization to investigate the degradation of high-molecular weight, C-ring-labeled synthetic lignin by microbial communities from moderately thermophilic hot spring sediment (52 °C) and a woody "hog fuel" pile (53 and 62 °C zones). C-Lignin degradation was monitored using IR-GCMS of CO, and isotopic enrichment of DNA was measured with UHLPC-MS/MS.

View Article and Find Full Text PDF

Thermal swamps are unique ecosystems where geothermally warmed waters mix with decomposing woody biomass, hosting novel biogeochemical-cycling and lignin-degrading microbial consortia. Assembly of shotgun metagenome libraries resolved 351 distinct genomes from hot-spring (30-45 °C) and mesophilic (17 °C) sediments. Annotation of 39 refined draft genomes revealed metabolism consistent with oligotrophy, including pathways for degradation of aromatic compounds, such as syringate, vanillate, p-hydroxybenzoate, and phenol.

View Article and Find Full Text PDF

Cytochrome P450 enzymes have tremendous potential as industrial biocatalysts, including in biological lignin valorization. Here, we describe P450s that catalyze the -demethylation of lignin-derived guaiacols with different ring substitution patterns. Bacterial strains EP4 and RHA1 both utilized alkylguaiacols as sole growth substrates.

View Article and Find Full Text PDF

The bacterial catabolism of aromatic compounds has considerable promise to convert lignin depolymerization products to commercial chemicals. Alkylphenols are a key class of depolymerization products whose catabolism is not well-elucidated. We isolated EP4 on 4-ethylphenol and applied genomic and transcriptomic approaches to elucidate alkylphenol catabolism in EP4 and RHA1.

View Article and Find Full Text PDF

The Pacific coastal temperate rainforest (PCTR) is a global hot-spot for carbon cycling and export. Yet the influence of microorganisms on carbon cycling processes in PCTR soil is poorly characterized. We developed and tested a conceptual model of seasonal microbial carbon cycling in PCTR soil through integration of geochemistry, micro-meteorology, and eukaryotic and prokaryotic ribosomal amplicon (rRNA) sequencing from 216 soil DNA and RNA libraries.

View Article and Find Full Text PDF

Long-term contrasts in agricultural management can shift soil resource availability with potential consequences to microbial carbon (C) use efficiency (CUE) and the fate of C in soils. Isothermal calorimetry was combined with C-labeled glucose stable isotope probing (SIP) of 16S rRNA genes to test the hypothesis that organically managed soils would support microbial communities with greater thermodynamic efficiency compared to conventional soils due to a legacy of lower resource availability and a resultant shift toward communities supportive of more oligotrophic taxa. Resource availability was greater in conventionally managed soils, with 3.

View Article and Find Full Text PDF

The abundance of nifH, nirS, and nirK gene fragments involved in nitrogen (N) fixation and denitrification in thinned second-growth Douglas-fir (Pseudotsuga menziesii subsp. menziesii [Mirb.] Franco) forest soil was investigated by using quantitative real-time PCR.

View Article and Find Full Text PDF

Roundup Ready (RR) soybeans containing recombinant Agrobacterium spp. CP4 5-enol-pyruvyl-shikimate-3-phosphate synthase (cp4 epsps) genes tolerant to the herbicide glyphosate are extensively grown worldwide. The concentration of recombinant DNA from RR soybeans in soil aggregates was studied due to the possibility of genetic transformation of soil bacteria.

View Article and Find Full Text PDF

Glyphosate-tolerant, Roundup Ready (RR) soybeans account for about 57% of all genetically modified (GM) crops grown worldwide. The entry of recombinant DNA into soil from GM crops has been identified as an environmental concern due to the possibility of their horizontal transfer to soil microorganisms. RR soybeans contain recombinant gene sequences that can be differentiated from wild-type plant and microbial genes in soil by using a sequence-specific molecular beacon and real-time polymerase chain reaction (PCR).

View Article and Find Full Text PDF

We grew plants of nine soybean varieties, six of which were genetically modified to express transgenic cp4-epsps, in the presence of Bradyrhizobium japonicum and arbuscular mycorrhizal fungi. Mycorrhizal colonization and nodule abundance and mass differed among soybean varieties; however, in no case was variation significantly associated with the genetic modification.

View Article and Find Full Text PDF