Sensing available nutrients and efficiently utilizing them is a challenge common to all organisms. The model filamentous fungus is capable of utilizing a variety of inorganic and organic nitrogen sources. Nitrogen utilization in is regulated by a network of pathway-specific transcription factors that activate genes necessary to utilize specific nitrogen sources in combination with nitrogen catabolite repression regulatory proteins.
View Article and Find Full Text PDFFilamentous fungi, such as , are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling of on 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates.
View Article and Find Full Text PDFBiotechnol Biofuels
September 2019
Background: Biofuels derived from lignocellulosic biomass are a viable alternative to fossil fuels required for transportation. Following plant biomass pretreatment, the furan derivative furfural is present at concentrations which are inhibitory to yeasts. Detoxification of furfural is thus important for efficient fermentation.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFSmall secreted proteins (SSPs), along with lignocellulose degrading enzymes, are integral components of the secretome of Pleurotus ostreatus, a white rot fungus. In this study, we identified 3 genes (ssp1, 2 and 3) encoding proteins that are annotated as SSPs and that exhibited of ~4,500- fold expression, 24 hr following exposure to the toxic compound 5-hydroxymethylfurfural (HMF). Homologues to genes encoding these SSPs are present in the genomes of other basidiomycete fungi, however the role of SSPs is not yet understood.
View Article and Find Full Text PDFMicroorganisms are capable of communication and cooperation to perform social activities. Cooperation can be enforced using kind discrimination mechanisms in which individuals preferentially help or punish others, depending on genetic relatedness only at certain loci. In the filamentous fungus Neurospora crassa, genetically identical asexual spores (germlings) communicate and fuse in a highly regulated process, which is associated with fitness benefits during colony establishment.
View Article and Find Full Text PDFG3 (Bethesda)
May 2016
When exposed to stress conditions, all cells induce mechanisms resulting in an attempt to adapt to stress that involve proteins which, once activated, trigger cell responses by modulating specific signaling pathways. In this work, using a combination of pulldown assays and mass spectrometry analyses, we identified the Neurospora crassa SEB-1 transcription factor that binds to the Stress Response Element (STRE) under heat stress. Orthologs of SEB-1 have been functionally characterized in a few filamentous fungi as being involved in stress responses; however, the molecular mechanisms mediated by this transcription factor may not be conserved.
View Article and Find Full Text PDFXanthones are a class of heterocyclic compounds characterized by a dibenzo-γ-pyrone nucleus. Analysis of their mode of action in cells, namely uncovering alterations in gene expression, is important because these compounds have potential therapeutic applications. Thus, we studied the transcriptional response of the filamentous fungus Neurospora crassa to a group of synthetic (thio)xanthone derivatives with antitumor activity using high throughput RNA sequencing.
View Article and Find Full Text PDFBackground: Current large-scale pretreatment processes for lignocellulosic biomass are generally accompanied by the formation of toxic degradation products, such as 5-hydroxymethylfurfural (HMF), which inhibit cellulolytic enzymes and fermentation by ethanol-producing yeast. Overcoming these toxic effects is a key technical barrier in the biochemical conversion of plant biomass to biofuels. Pleurotus ostreatus, a white-rot fungus, can efficiently degrade lignocellulose.
View Article and Find Full Text PDFAlterations in the intracellular levels of calcium are a common response to cell death stimuli in animals and fungi and, particularly, in the response to staurosporine. We highlight the importance of the extracellular availability of Ca for this response. Limitation of the ion in the culture medium further sensitizes cells to the drug and results in increased accumulation of reactive oxygen species (ROS).
View Article and Find Full Text PDFWe pinpoint CZT-1 (cell death-activated zinc cluster transcription factor) as a novel transcription factor involved in tolerance to cell death induced by the protein kinase inhibitor staurosporine in Neurospora crassa. Transcriptional profiling of staurosporine-treated wild-type cells by RNA-sequencing showed that genes encoding the machinery for protein synthesis are enriched among the genes repressed by the drug. Functional category enrichment analyses also show that genes encoding components of the mitochondrial respiratory chain are downregulated by staurosporine, whereas genes involved in endoplasmic reticulum activities are upregulated.
View Article and Find Full Text PDFBackground: Self/nonself discrimination is an essential feature for pathogen recognition and graft rejection and is a ubiquitous phenomenon in many organisms. Filamentous fungi, such as Neurospora crassa, provide a model for analyses of population genetics/evolution of self/nonself recognition loci due to their haploid nature, small genomes and excellent genetic/genomic resources. In N.
View Article and Find Full Text PDF