Publications by authors named "David J Harvey"

The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12 update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews.

View Article and Find Full Text PDF

This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays.

View Article and Find Full Text PDF

Follicle-stimulating hormone (FSH), an α/β heterodimeric glycoprotein hormone, consists of functionally significant variants resulting from the presence or absence of either one of two FSHβ subunit N-glycans. The two most abundant variants are fully-glycosylated FSH24 (based on 24 kDa FSHβ band in Western blots) and hypo-glycosylated FSH21 (21 kDa band, lacks βAsn glycans). Due to its ability to bind more rapidly to the FSH receptor and occupy more FSH binding sites than FSH24, hypo-glycosylated FSH21 exhibits greater biological activity.

View Article and Find Full Text PDF

This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays.

View Article and Find Full Text PDF
Article Synopsis
  • Structural determination of N-glycans via mass spectrometry is most effective using negative ion collision-induced dissociation (CID), which produces spectra highlighting cross-ring fragments that offer unique structural insights.
  • Larger glycans (over m/z 2000) tend to generate doubly charged ions, which exhibit different fragmentation patterns compared to singly charged ions, although detailed comparisons are lacking.
  • The study investigates various multiply charged ions formed from N-glycans, specifically focusing on diagnostic fragments in their CID spectra, and discusses their potential for aiding in glycan characterization.
View Article and Find Full Text PDF

Negative ion collision-induced dissociation (CID) of underivatized N-glycans has proved to be a simple, yet powerful method for their structural determination. Recently, we have identified a series of such structures with GalNAc rather than the more common galactose capping the antennae of hybrid and complex glycans. As part of a series of publications describing the negative ion fragmentation of different types of N-glycan, this paper describes their CID spectra and estimated nitrogen cross sections recorded by travelling wave ion mobility mass spectrometry (TWIMS).

View Article and Find Full Text PDF

Glycomics, the study of the entire complement of sugars of an organism has received significant attention in the recent past due to the advances made in high throughput mass spectrometry technologies. These analytical advancements have facilitated the characterization of glycans associated with the follicle-stimulating hormones (FSH), which play a central role in the human reproductive system both in males and females utilizing regulating gonadal (testicular and ovarian) functions. The irregularities in FSH activity are also directly linked with osteoporosis.

View Article and Find Full Text PDF

This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays.

View Article and Find Full Text PDF

Complex recombinant glycoproteins produced as potential biopharmaceuticals in goat's milk have an aberrant pattern of N-glycosylation due to the lack of multi-antennary structures. Overexpression of glycosyltransferases may increase oligosaccharide branching of the desired glycoproteins. Here, human erythropoietin fused to human IgG Fc (EPO-Fc) was co-expressed with N-acetyl-glucosaminyltransferase-IVa (GnT-IVa) by adenoviral transduction in goat mammary gland to evaluate the in vivo modification of N-glycosylation pattern in this tissue.

View Article and Find Full Text PDF

Numerous broadly neutralizing antibodies (bnAbs) have been identified that target the glycans of the HIV-1 envelope spike. Neutralization breadth is notable given that glycan processing can be substantially influenced by the presence or absence of neighboring glycans. Here, using a stabilized recombinant envelope trimer, we investigate the degree to which mutations in the glycan network surrounding an epitope impact the fine glycan processing of antibody targets.

View Article and Find Full Text PDF

N-glycans from glycoproteins are complex, branched structures whose structural determination presents many analytical problems. Mass spectrometry, usually conducted in positive ion mode, often requires extensive sample manipulation, usually by derivatization such as permethylation, to provide the necessary structure-revealing fragment ions. The newer but, so far, lesser used negative ion techniques, on the contrary, provide a wealth of structural information not present in positive ion spectra that greatly simplify the analysis of these compounds and can usually be conducted without the need for derivatization.

View Article and Find Full Text PDF
Article Synopsis
  • * It is organized into three sections: the first covers the fragmentation patterns of various TMS derivatives (like alcohols and acids), the second deals with reactions involving siliconium ions, and the third looks at other alkylsilyl derivatives (such as di- and trialkyl-silyl compounds).
  • * The review highlights the complexity of analyzing larger molecules like lipids, carbohydrates, and steroids, showcasing the versatility of silyl derivatives in enhancing mass spectral analysis.
View Article and Find Full Text PDF

Glycoconjugates are diverse biomolecules that are dynamically assembled to regulate and fine-tune numerous cellular processes. Their biosynthesis is nontemplate-driven, achieved stepwise in discrete locations within the cell, giving rise to a range of complex branched structures that pose a significant challenge in structural biology. Mass spectrometry is the leading method for analysis of glycoconjugates, and the addition of ion mobility has proven valuable for improving structural assignments of individual glycans in complex biological mixtures.

View Article and Find Full Text PDF
Article Synopsis
  • * Seventy-six laboratories from various sectors around the world participated, submitting 103 reports using different analytical methods to examine glycan distributions.
  • * The study revealed significant diversity in results, with up to 48 glycan compositions identified by individual labs, highlighting the need for standardization in glycosylation analysis methods.
View Article and Find Full Text PDF

Glycosylation is one of the most important post-translational modifications essential for modulating biological functions on cellular surfaces and within cells. Glycan structures are not predictable from the genome since their biosynthesis is nontemplate driven and subject to multiple sequential and competitive glycosyltransferases/glycosidases. From a structural viewpoint, their analysis presents a particular challenge in terms of sensitivity and structural characterization.

View Article and Find Full Text PDF

FSH glycosylation varies in two functionally important aspects: microheterogeneity, resulting from oligosaccharide structure variation, and macroheterogeneity, arising from partial FSHβ subunit glycosylation. Although advances in mass spectrometry permit extensive characterization of FSH glycan populations, microheterogeneity remains difficult to illustrate, and comparisons between different studies are challenging because no standard format exists for rendering oligosaccharide structures. FSH microheterogeneity is illustrated using a consistent glycan diagram format to illustrate the large array of structures associated with one hormone.

View Article and Find Full Text PDF
Article Synopsis
  • - Glycosylation, a key modification of serum proteins, is linked to various human diseases, but there's limited knowledge about glycosylation in other mammals, particularly dogs.
  • - This study utilizes advanced techniques to analyze the glycosylation patterns in canine serum, revealing notable differences from human serum, like lower levels of certain glycans.
  • - The findings will provide a foundational reference for upcoming research on canine health and disease through serum analysis.
View Article and Find Full Text PDF

Altered glycosylation patterns of plasma proteins are associated with autoimmune disorders and pathogenesis of various cancers. Elucidating glycoprotein microheterogeneity and relating subtle changes in the glycan structural repertoire to changes in protein-protein, or protein-small molecule interactions, remains a significant challenge in glycobiology. Here, we apply mass spectrometry-based approaches to elucidate the global and site-specific microheterogeneity of two plasma proteins: α1-acid glycoprotein (AGP) and haptoglobin (Hp).

View Article and Find Full Text PDF

There is considerable potential for the use of ion mobility mass spectrometry in structural glycobiology due in large part to the gas-phase separation attributes not typically observed by orthogonal methods. Here, we evaluate the capability of traveling wave ion mobility combined with negative ion collision-induced dissociation to provide structural information on N-linked glycans containing multiple fucose residues forming the Lewis and Lewis epitopes. These epitopes are involved in processes such as cell-cell recognition and are important as cancer biomarkers.

View Article and Find Full Text PDF

Viral diseases contribute much to human and animal suffering and enormous efforts are directed at developing appropriate vaccines for protection. Glycoproteins constitute much of the viral surfaces and are obvious targets for such vaccine development. This review describes mass spectrometric methods used for the structural determination of these compounds.

View Article and Find Full Text PDF

Fucose is an essential deoxysugar that is found in a wide range of biologically relevant glycans and glycoconjugates. A recurring problem in mass spectrometric analyses of fucosylated glycans is the intramolecular migration of fucose units, which can lead to erroneous sequence assignments. This migration reaction is typically assigned to activation during collision-induced dissociation (CID) in tandem mass spectrometry (MS).

View Article and Find Full Text PDF

This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals.

View Article and Find Full Text PDF