Publications by authors named "David J Hannapel"

A significant number of discoveries in past two decades have established the importance of long-distance signaling in controlling plant growth, development, and biotic and abiotic stress responses. Numerous mobile signals, such as mRNAs, proteins, including RNA-binding proteins, small RNAs, sugars, and phytohormones, are shown to regulate various agronomic traits such as flowering, fruit, seed development, and tuberization. Potato is a classic model tuber crop, and several mobile signals are known to govern tuber development.

View Article and Find Full Text PDF

Mobility assays coupled with RNA profiling have revealed the presence of hundreds of full-length non-cell-autonomous messenger RNAs that move through the whole plant via the phloem cell system. Monitoring the movement of these RNA signals can be difficult and time consuming. Here we describe a simple, virus-based system for surveying RNA movement by replacing specific sequences within the viral RNA genome of potato virus X (PVX) that are critical for movement with other sequences that facilitate movement.

View Article and Find Full Text PDF

Storage tuber and root crops make up a significant portion of the world's subsistence food supply. Because of their importance in food security, yield enhancement has become a priority. A major focus has been to understand the biology of belowground storage organ development.

View Article and Find Full Text PDF

Yeast-hybrid methods have been successfully applied for screening interacting partners of DNAs or proteins. A yeast-based method, the yeast three-hybrid system, using a chimeric protein of a DNA-binding domain (LexA or GAL4BD) with a protein (MS2 coat protein or HIV Rev. M10) having a hybrid RNA at the 3' end of a target RNA sequence, has been developed for screening RNA-binding proteins.

View Article and Find Full Text PDF

Background: Polypyrimidine-tract binding proteins (PTBs) are ubiquitous RNA-binding proteins in plants and animals that play diverse role in RNA metabolic processes. PTB proteins bind to target RNAs through motifs rich in cytosine/uracil residues to fine-tune transcript metabolism. Among tuber and root crops, potato has been widely studied to understand the mobile signals that activate tuber development.

View Article and Find Full Text PDF

The three critical switches that regulate the onset of tuber formation in potato interact in a dynamic signaling pathway.

View Article and Find Full Text PDF

Included among the many signals that traffic through the sieve element system are full-length mRNAs that function to respond to the environment and to regulate development. In potato, several mRNAs that encode transcription factors from the three-amino-loop-extension (TALE) superfamily move from leaves to roots and stolons via the phloem to control growth and signal the onset of tuber formation. This RNA transport is enhanced by short-day conditions and is facilitated by RNA-binding proteins from the polypyrimidine tract-binding family of proteins.

View Article and Find Full Text PDF

We demonstrate that RNAs of StBEL11 and StBEL29 are phloem-mobile and function antagonistically to the growth-promoting characteristics of StBEL5 in potato. Both these RNAs appear to inhibit tuber growth by repressing the activity of target genes of StBEL5 in potato. Moreover, upstream sequence driving GUS expression in transgenic potato lines demonstrated that both StBEL11 and -29 promoter activity is robust in leaf veins, petioles, stems, and vascular tissues and induced by short days in leaves and stolons.

View Article and Find Full Text PDF

The BEL1-like family of transcription factors is ubiquitous in plants and plays important roles in regulating development. They function in tandem with KNOTTED1 types to bind to a double TTGAC motif in the upstream sequence of target genes. StBEL5 of potato (Solanum tuberosum) functions as a mobile RNA signal that is transcribed in leaves, moves down into stolons in response to short days, and induces tuber formation.

View Article and Find Full Text PDF

Background: Numerous signal molecules, including proteins and mRNAs, are transported through the architecture of plants via the vascular system. As the connection between leaves and other organs, the petiole and stem are especially important in their transport function, which is carried out by the phloem and xylem, especially by the sieve elements in the phloem system. The phloem is an important conduit for transporting photosynthate and signal molecules like metabolites, proteins, small RNAs, and full-length mRNAs.

View Article and Find Full Text PDF

Polypyrimidine tract-binding (PTB) proteins are a family of RNA-binding proteins that function in a wide range of RNA metabolic processes by binding to motifs rich in uracils and cytosines. A PTB protein of pumpkin was identified as the core protein of an RNA-protein complex that trafficks RNA. The biological function of the PTB-RNA complex, however, has not been demonstrated.

View Article and Find Full Text PDF

BEL1-type proteins are ubiquitous plant transcription factors in the three-amino-acid-loop-extension superfamily. They interact with KNOTTED1-like proteins, and function as heterodimers in both floral and vegetative development. Using the yeast two-hybrid system with POTATO HOMEOBOX1 (POTH1) as the bait, seven BEL1-type proteins were originally identified.

View Article and Find Full Text PDF

Phloem-mobile signals that are regulated by day length activate both flowering and tuber formation. Both signaling processes have numerous elements in common. In this review, FLOWERING LOCUS T and the three signals currently implicated in controlling tuberization, SP6A, miR172, and the StBEL5 complex, are discussed with a focus on their functional roles, their mechanisms of long-distance transport, and their possible interactions.

View Article and Find Full Text PDF

Numerous signal molecules move through the phloem to regulate development, including proteins, secondary metabolites, small RNAs and full-length transcripts. Several full-length mRNAs have been identified that move long distances in a shootward or rootward direction through the plant vasculature to modulate both floral and vegetative processes of growth. Here we discuss two recently discovered examples of long-distance transport of full-length mRNAs into roots and the potential target genes and pathways for these mobile signals.

View Article and Find Full Text PDF

Polypyrimidine tract-binding (PTB) proteins are RNA-binding proteins that generally contain four RNA recognition motifs (RRMs). In potato, six cDNAs encoding full-length PTB proteins have been identified. In the present study Nova1-like protein, designated StNova1, was identified as a potential interacting partner of the StPTB proteins via yeast two-hybrid screening.

View Article and Find Full Text PDF

BEL1- and KNOTTED1-type proteins are transcription factors from the three-amino-loop-extension superclass that interact in a tandem complex to regulate the expression of target genes. In potato (Solanum tuberosum), StBEL5 and its Knox protein partner regulate tuberization by targeting genes that control growth. RNA movement assays demonstrated that StBEL5 transcripts move through the phloem to stolon tips, the site of tuber induction.

View Article and Find Full Text PDF

Heterografting and RNA transport experiments have demonstrated the long-distance mobility of StBEL5 RNA, its role in controlling tuber formation, and the function of the 503-nt 3' untranslated region (UTR) of the RNA in mediating transport. Because the 3' UTR of StBEL5 is a key element in regulating several aspects of RNA metabolism, a potato leaf cDNA library was screened using the 3' UTR of StBEL5 as bait in the yeast three-hybrid (Y3H) system to identify putative partner RNA-binding proteins (RBPs). From this screen, 116 positive cDNA clones were isolated based on nutrient selection, HIS3 activation, and lacZ induction and were sequenced and classified.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CDPKs) are key components of calcium regulated signaling cascades in plants. In this work, isoform StCDPK3 from Solanum tuberosum was studied and fully described. StCDPK3 encodes a 63 kDa protein with an N-terminal variable domain (NTV), rich in prolines and glutamines, which presents myristoylation and palmitoylation consensus sites and a PEST sequence indicative of rapid protein degradation.

View Article and Find Full Text PDF

Polypyrimidine tract-binding (PTB) proteins are RNA-binding proteins that target specific RNAs for post-transcriptional processing by binding cytosine/uracil motifs. PTBs have established functions in a range of RNA processes including splicing, translation, stability and long-distance transport. Six PTB-like genes identified in potato have been grouped into two clades based on homology to other known plant PTBs.

View Article and Find Full Text PDF

Potato Homeobox1 (POTH1) is a Knotted1-like transcription factor from the Three Amino Acid Loop Extension (TALE) superfamily that is involved in numerous aspects of development in potato (Solanum tuberosum L). POTH1 interacts with its protein partner, StBEL5, to facilitate binding to specific target genes to modulate hormone levels, mediate leaf architecture, and enhance tuber formation. In this study, promoter analyses show that the upstream sequence of POTH1 drives β-glucuronidase activity in response to light and in association with phloem cells in both petioles and stems.

View Article and Find Full Text PDF

In potato (Solanum tuberosum), a signal is delivered from the leaf to underground organs to activate tuber formation. Short-day (SD) conditions induce tuberization and long-day (LD) inhibits the process. Recent studies have implicated a mobile RNA, StBEL5, as a potential signal in this process.

View Article and Find Full Text PDF

Ice recrystallization inhibition (IRI) proteins are thought to play an important role in conferring freezing tolerance in plants. Two genes encoding IRI proteins, LpIRI-a and LpIRI-b, were isolated from a relatively cold-tolerant perennial ryegrass cv. Caddyshack.

View Article and Find Full Text PDF

BEL1-like transcription factors are ubiquitous in plants and interact with KNOTTED1-types to regulate numerous developmental processes. In potato, the RNA of several BEL1-like transcription factors has been identified in phloem cells. One of these, StBEL5, and its Knox protein partner regulate tuber formation by targeting genes that control growth.

View Article and Find Full Text PDF

BEL1-like transcription factors are ubiquitous in plants and interact with KNOTTED1 types to regulate numerous developmental processes. In potato (Solanum tuberosum subsp. andigena), the BEL1-like transcription factor StBEL5 and its Knox protein partner regulate tuber formation by targeting genes that control growth.

View Article and Find Full Text PDF

Although numerous RNAs have been detected in the phloem, only a few have been confirmed to move long distances. In potato, full-length mRNA of the BEL1-like transcription factor, StBEL5, moves from leaf veins through the phloem to stolon tips to activate tuber formation. BEL1-like transcription factors are ubiquitous in plants and interact with KNOTTED1-types to regulate numerous developmental processes.

View Article and Find Full Text PDF