We show the design and fabrication of high diffraction efficiency, optically recorded gradient-index Fresnel lenses in a two-stage photopolymer. A design analysis reveals that lens f/# is limited by the material refractive index contrast, motivating use of recent high-contrast polymers. The number of pixels required for the optical exposure is typically well beyond available spatial light-modulator resolutions, motivating the use of a photolithographic mask.
View Article and Find Full Text PDFWe demonstrate that multiple exposures of a two-component holographic photopolymer can quadruple the refractive index contrast of the material beyond the single-exposure saturation limit. Quantitative phase microscopy of isolated structures written by laser direct-write lithography is used to characterize the process. This technique reveals that multiple exposures are made possible by diffusion of the chemical components consumed during writing into the previously exposed regions.
View Article and Find Full Text PDFPrecise direct-write lithography of 3D waveguides or diffractive structures within the volume of a photosensitive material is hindered by the lack of metrology that can yield predictive models for the micron-scale refractive index profile in response to a range of exposure conditions. We apply the transport of intensity equation in conjunction with confocal reflection microscopy to capture the complete spatial frequency spectrum of isolated 10 μm-scale gradient-refractive index structures written by single-photon direct-write laser lithography. The model material, a high-performance two-component photopolymer, is found to be linear, integrating, and described by a single master dose response function.
View Article and Find Full Text PDFHolographic photopolymers capable of high refractive index modulation (Δn) on the order of 10 are integral for the fabrication of functional holographic optical elements that are useful in a myriad of optical applications. In particular, to address the deficiency of suitable high refractive index writing monomers for use in two-stage holographic formulations, here we report a novel high refractive index writing monomer, 1,3-bis(phenylthio)-2-propyl acrylate (BPTPA), simultaneously possessing enhanced solubility in a low refractive index (n = 1.47) urethane matrix.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2016
We demonstrate the formation of shape-programmed, glassy origami structures using a single-layer photopolymer with two mechanically distinct phases. The latent origami pattern consisting of rigid, high cross-link density panels and flexible, low cross-link density creases is fabricated using a series of photomask exposures. Strong optical absorption of the polymer formulation creates depth-wise gradients in the cross-link density of the creases, enforcing directed folding which enables programming of both mountain and valley folds within the same sheet.
View Article and Find Full Text PDF