Publications by authors named "David J Fischer"

Follicle-stimulating hormone (FSH), acting on its receptor (FSHR), plays a pivotal role in the stimulation of follicular development and maturation. Multiple injections of protein formulations are used during clinical protocols for ovulation induction and for in vitro fertilization that are followed by a selection of assisted reproductive technologies. In order to increase patient convenience and compliance several research groups have searched for orally bioavailable FSH mimetics for innovative fertility medicines.

View Article and Find Full Text PDF

The fabrication and evaluation of different electrode materials and electrode alignments for microchip electrophoresis with electrochemical detection is described. The influences of electrode material, both metal and carbon-based, on sensitivity and LOD were examined. In addition, the effects of working electrode alignment on analytical performance (in terms of peak shape, resolution, sensitivity, and LOD) were directly compared.

View Article and Find Full Text PDF

A chimeric recombinant human gonadotropin, termed C3, demonstrates both follitropic and lutropic bioactivities. The alpha-subunit construct for C3 is comprised of the recombinant wild-type human glycoprotein hormone alpha-subunit. The beta-subunit DNA construct for C3 encodes residues 1-145 from human chorionic gonadotropin (hCG)-beta with the exceptions that FSH beta amino acid 88 (D) is substituted for hCG beta amino acid 94 (R) and FSH beta amino acids 95-108 (TVRGLGPSYCSFGE) are substituted for hCG beta amino acids 101-114 (GGPKDHPLTCDDPR).

View Article and Find Full Text PDF

Significant progress in the development of miniaturized microfluidic systems has occurred since their inception over a decade ago. This is primarily due to the numerous advantages of microchip analysis, including the ability to analyze minute samples, speed of analysis, reduced cost and waste, and portability. This review focuses on recent developments in integrating electrochemical (EC) detection with microchip capillary electrophoresis (CE).

View Article and Find Full Text PDF

The ability of nitric oxide to relax smooth muscle cells surrounding resistance vessels in vivo is well documented. Here, we describe a series of studies designed to quantify amounts of adenosine triphosphate (ATP), a known stimulus of NO production in endothelial cells, released from erythrocytes that are mechanically deformed as these cells traverse microbore channels in lithographically patterned microchips. Results indicate that micromolar amounts of ATP are released from erythrocytes flowing through channels having cross sectional dimensions of 60 x 38 micron (2.

View Article and Find Full Text PDF

A novel method is described for measuring the deformability of red blood cells (RBCs) in tubing whose diameters approximate forces encountered in vivo. Here, RBCs from rabbits are loaded into a 50 cm section of 75 microm id microbore tubing and connected to a syringe pump. This section of tubing is then connected to a 15 cm section of 25 microm id tubing.

View Article and Find Full Text PDF

Recent characterization of lysophosphatidic acid (LPA) receptors has made possible studies elucidating the structure-activity relationships (SAR) for agonist activity at individual receptors. Additionally, the availability of these receptors has allowed the identification of antagonists of LPA-induced effects. Two receptor-subtype selective LPA receptor antagonists, one selective for the LPA1/EDG2 receptor (a benzyl-4-oxybenzyl N-acyl ethanolamide phosphate, NAEPA, derivative) and the other selective for the LPA3/EDG7 receptor (diacylglycerol pyrophosphate, DGPP, 8:0), have recently been reported.

View Article and Find Full Text PDF