Publications by authors named "David J Elliot"

Background/aim: The hypoglycemic drug metformin (MET) and the anti-epileptic drug valproic acid (VPA) have individually shown anti-tumor effects in prostate cancer in vitro. The present study intended to investigate the efficacy of the combination of MET and VPA in prostate cancer treatment in a pre-clinical xenograft model.

Materials And Methods: Prostate cancer cell lines (LNCaP and PC-3) were inoculated under the skin of BALB/c nude mice.

View Article and Find Full Text PDF

Malignant pleural mesothelioma (MPM) is a devastating malignancy with a prognosis of <12 months. Even with bans on the use of asbestos in most Western countries, the incidence is still increasing due to the long latency periods between exposure and development of the disease. Diagnosis is often delayed due to invasive biopsies and lack of distinguishable markers.

View Article and Find Full Text PDF

1. The metabolism of the anti-inflammatory diterpenoid polyandric acid A (PAA), a constituent of the Australian Aboriginal medicinal plant Dodonaea polyandra, and its de-esterified alcohol metabolite, hydrolysed polyandric acid A (PAAH) was studied in vitro using human liver microsomes (HLM) and recombinant UDP-glucuronosyltransferase (UGT) and cytochrome P450 (CYP) enzymes. 2.

View Article and Find Full Text PDF

Morphine 3-β-D-glucuronide (M3G) and morphine 6-β-D-glucuronide (M6G) are the major metabolites of morphine in humans. More recently, morphine-3-β-d-glucoside (M-3-glucoside) was identified in the urine of patients treated with morphine. Kinetic and inhibition studies using human liver microsomes (HLM) and recombinant UGTs as enzyme sources along with molecular modeling were used here to characterize the relationship between morphine glucuronidation and glucosidation.

View Article and Find Full Text PDF

Long-chain unsaturated fatty acids inhibit several cytochrome P450 and UDP-glucuronosyltransferase (UGT) enzymes involved in drug metabolism, including CYP2C8, CYP2C9, UGT1A9, UGT2B4, and UGT2B7. Bovine serum albumin (BSA) enhances these cytochrome P450 and UGT activities by sequestering fatty acids that are released from membranes, especially with human liver microsomes (HLM) as the enzyme source. Here, we report the effects of BSA on CYP1A2-catalyzed phenacetin (PHEN) O-deethylation and lidocaine (LID) N-deethylation using HLM and Escherichia coli-expressed recombinant human CYP1A2 (rCYP1A2) as the enzyme sources.

View Article and Find Full Text PDF

The fluorescence of 1-anilinonaphthalene-8-sulfonate (ANS) in the presence of human liver microsomes (HLMs) is altered by drugs that bind nonspecifically to the lipid bilayer. The present study characterized the relationship between the nonspecific binding (NSB) of drugs to HLMs as measured by equilibrium dialysis and the magnitude of the change in baseline ANS fluorescence. Fraction unbound in incubations of HLMs (f(u(mic))) was determined for 16 drugs (12 bases, 3 acids, and 1 neutral) with log P values in the range 0.

View Article and Find Full Text PDF

Enzyme selective inhibitors represent the most valuable experimental tool for reaction phenotyping. However, only a limited number of UDP-glucuronosyltransferase (UGT) enzyme-selective inhibitors have been identified to date. This study characterized the UGT enzyme selectivity of niflumic acid (NFA).

View Article and Find Full Text PDF

The human UDP glycosyltransferase (UGT) 3A family is one of three families involved in the metabolism of small lipophilic compounds. Members of these families catalyze the addition of sugar residues to chemicals, which enhances their excretion from the body. The UGT1 and UGT2 family members primarily use UDP glucuronic acid to glucuronidate numerous compounds, such as steroids, bile acids, and therapeutic drugs.

View Article and Find Full Text PDF

Because codeine (COD) is eliminated primarily via glucuronidation, factors that alter COD glucuronide formation potentially affect the proportion of the dose converted to the pharmacologically active metabolite morphine. Thus, in vitro-in vivo extrapolation approaches were used to identify potential drug-drug interactions arising from inhibition of COD glucuronidation in humans. Initial studies characterized the kinetics of COD-6-glucuronide (C6G) formation by human liver microsomes (HLM) and demonstrated an 88% reduction in the Michaelis constant (K(m)) (0.

View Article and Find Full Text PDF

Objectives: To evaluate zolpidem as a mechanism-based inactivator of human CYP3A in vitro, and to assess its metabolic interaction potential with CYP3A drugs (in vitro-in vivo extrapolation; IV-IVE).

Methods: A co- vs. pre-incubation strategy was used to quantify time-dependent inhibition of human liver microsomal (HLM) and recombinant CYP3A4 (rCYP3A4) by zolpidem.

View Article and Find Full Text PDF

Aims: To characterize: i) the kinetics of aldosterone (ALDO) 18beta-glucuronidation using human liver and human kidney microsomes and identify the human UGT enzyme(s) responsible for ALDO 18beta-glucuronidation and ii) the inhibition of ALDO 18beta-glucuronidation by non-selective NSAIDs.

Methods: Using HPLC and LC-MS methods, ALDO 18beta-glucuronidation was characterized using human liver (n= 6), human kidney microsomes (n= 5) and recombinant human UGT 1A1, 1A3, 1A4, 1A5, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B10, 2B15, 2B17 and 2B28 as the enzyme sources. Inhibition of ALDO 18beta-glucuronidation was investigated using alclofenac, cicloprofen, diclofenac, diflunisal, fenoprofen, R- and S-ibuprofen, indomethacin, ketoprofen, ketorolac, meclofenamic acid, mefenamic acid, S-naproxen, pirprofen and tiaprofenic acid.

View Article and Find Full Text PDF

In order to gain insights into the renal and hepatic glucuronidation of frusemide (FSM), this study: (i) characterised the kinetics of FSM glucuronidation by human liver microsomes (HLM) and human kidney cortical- (HKCM) and medullary- (HKMM) microsomes, and (ii) identified the human UDP-glucuronosyltransferase enzyme(s) involved in this pathway. HLM, HKCM and HLMM efficiently glucuronidated FSM. FSM glucuronide (FSMG) formation followed Michaelis-Menten kinetics in all tissues.

View Article and Find Full Text PDF

This study characterized the mechanism by which bovine serum albumin (BSA) reduces the K(m) for phenytoin (PHY) hydroxylation and the implications of the "albumin effect" for in vitro-in vivo extrapolation of kinetic data for CYP2C9 substrates. BSA and essentially fatty acid-free human serum albumin (HSA-FAF) reduced the K(m) values for PHY hydroxylation (based on unbound substrate concentration) by human liver microsomes (HLMs) and recombinant CYP2C9 by approximately 75%, with only a minor effect on V(max). In contrast, crude human serum albumin increased the K(m) with both enzyme sources.

View Article and Find Full Text PDF

Objectives: UGT1A1 coding region mutations, including UGT1A1*6 (G71R), UGT1A1*7 (Y486D), UGT1A1*27 (P229Q) and UGT1A1*62 (F83L), have been linked to Gilbert syndrome in Asian populations, whereas homozygosity for UGT1A1*7 is associated with the Crigler-Najjar syndrome type II. This work compared the effects of (a) the individual UGT1A1 mutations on the glucuronidation kinetics bilirubin, beta-estradiol, 4-methylumbelliferone (4MU) and 1-naphthol (1NP), and (b) the Y486 mutation, which occurs in the conserved carboxyl terminal domain of UGT1A enzymes, on 4MU, 1NP and naproxen glucuronidation by UGT1A3, UGT1A6 and UGT1A10.

Methods: Mutant UGT1A cDNAs were generated by site-directed mutagenesis and the encoded proteins were expressed in HEK293 cells.

View Article and Find Full Text PDF

Despite high sequence identity, UGT1A3 and UGT1A4 differ in terms of substrate selectivity. UGT1A3 glucuronidates the planar phenols 1-naphthol (1-NP) and 4-methylumbelliferone (4-MU), whereas UGT1A4 converts the tertiary amines lamotrigine (LTG) and trifluoperazine (TFP) to quaternary ammonium glucuronides. Residues 45 to 154 (which incorporate 21 of the 35 amino acid differences) and 45 to 535 were exchanged between UGT1A3 and UGT1A4 to generate UGT1A3-4((45-535)), UGT1A3-4((45-154))-3, UGT1A4-3((45-535)), and UGT1A4-3((45-154))-4 hybrid proteins.

View Article and Find Full Text PDF

Aims: To identify the human cytochrome P450 (CYP) enzymes responsible for the formation of the 6beta-hydroxy (6beta-OHGz), 7beta-hydroxy (7beta-OHGz) and hydroxymethyl (MeOH-Gz) metabolites of gliclizide (Gz).

Methods: 6beta-OHGz, 7beta-OHGz and MeOH-Gz formation by human liver microsomes and a panel of recombinant human P450s was measured using a high-performance liquid chromatography procedure, and the kinetics of metabolite formation was determined for each pathway. Effects of prototypic CYP enzyme selective inhibitors were characterized for each of the microsomal metabolic pathways.

View Article and Find Full Text PDF

Studies were performed to elucidate the mechanism responsible for the reduction in Km values of UDP-glucuronosyltransferase 2B7 (UGT2B7) substrates observed for incubations conducted in the presence of albumin. Addition of bovine serum albumin (BSA) and fatty acid-free human serum albumin (HSA-FAF), but not "crude" HSA, resulted in an approximate 90% reduction in the Km values for the glucuronidation of zidovudine (AZT) by human liver microsomes (HLM) and UGT2B7 and a 50 to 75% reduction in the S50 for 4-methylumbelliferone (4MU) glucuronidation by UGT2B7, without affecting Vmax. Oleic, linoleic, and arachidonic acids were shown to be the most abundant unsaturated long-chain fatty acids present in crude HSA and in the membranes of HLM and human embryonic kidney (HEK)293 cells, and it was demonstrated that these and other unsaturated long-chain fatty acids were UGT2B7 substrates.

View Article and Find Full Text PDF

Despite the important role of UDP-glucuronosyltransferases (UGT) in the metabolism of drugs, environmental chemicals and endogenous compounds, the structural features of these enzymes responsible for substrate binding and selectivity remain poorly understood. Since UGT2B7 and UGT2B15 exhibit distinct, but overlapping, substrate selectivities, UGT2B7-UGT2B15 chimeras were constructed here to identify substrate binding domains. A UGT2B7-15-7 chimera that incorporated amino acids 61-194 of UGT2B15 glucuronidated the UGT2B15 substrates testosterone and phenolphthalein, but not the UGT2B7 substrates zidovudine and 11alpha-hydroxyprogesterone.

View Article and Find Full Text PDF

The uricosuric agent sulfinpyrazone (SFZ) is metabolized via C-glucuronidation, an uncommon metabolic pathway, in humans. The present study aimed to characterize SFZ glucuronidation by human liver microsomes (HLMs) and identify the hepatic forms of UDP-glucuronosyltransferase responsible for this pathway. Incubations of SFZ with HLMs formed a single glucuronide that was resistant to beta-glucuronidase and acid hydrolysis, consistent with formation of a C-glucuronide.

View Article and Find Full Text PDF

Aims: To characterize potential mechanism-based inactivation (MBI) of major human drug-metabolizing cytochromes P450 (CYP) by monoamine oxidase (MAO) inhibitors, including the antitubercular drug isoniazid.

Methods: Human liver microsomal CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A activities were investigated following co- and preincubation with MAO inhibitors. Inactivation kinetic constants (KI and kinact) were determined where a significant preincubation effect was observed.

View Article and Find Full Text PDF

Studies were performed to investigate the UDP-glucuronosyltransferase enzyme(s) responsible for the human liver microsomal N2-glucuronidation of the anticonvulsant drug lamotrigine (LTG) and the mechanistic basis for the LTG-valproic acid (VPA) interaction in vivo. LTG N2-glucuronidation by microsomes from five livers exhibited atypical kinetics, best described by a model comprising the expressions for the Hill (1869 +/- 1286 microM, n = 0.65 +/- 0.

View Article and Find Full Text PDF

Aims: Using the fluconazole-zidovudine (AZT) interaction as a model, to determine whether inhibition of UDP-glucuronosyltransferase (UGT) catalysed drug metabolism in vivo could be predicted quantitatively from in vitro kinetic data generated in the presence and absence bovine serum albumin (BSA).

Methods: Kinetic constants for AZT glucuronidation were generated using human liver microsomes (HLM) and recombinant UGT2B7, the principal enzyme responsible for AZT glucuronidation, as the enzyme sources with and without fluconazole. K(i) values were used to estimate the decrease in AZT clearance in vivo.

View Article and Find Full Text PDF

Cytochrome P4501A2 (CYP1A2) is responsible for the metabolism of a diverse range of clinically used drugs and dietary and environmental chemicals (including many procarcinogens). CYP1A2 expression is influenced by numerous factors, and hence wide interindividual variability is a characteristic feature of this enzyme in humans. Phenacetin represents a convenient probe for the assessment of human CYP1A2 activity in vitro (hepatic microsomes and recombinant enzyme).

View Article and Find Full Text PDF

Relatively few selective substrate and inhibitor probes have been identified for human UDP-glucuronosyltransferases (UGTs). This work investigated the selectivity of trifluoperazine (TFP), as a substrate, and amitriptyline, androsterone, canrenoic acid, hecogenin, phenylbutazone, quinidine, quinine, and sulfinpyrazone, as inhibitors, for human UGTs. Selectivity was assessed using UGTs 1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B7, and 2B15 expressed in HEK293 cells.

View Article and Find Full Text PDF

Aims: To characterize the kinetics of S-naproxen ('naproxen') acyl glucuronidation and desmethylnaproxen acyl and phenolic glucuronidation by human liver microsomes and identify the human UGT isoform(s) catalysing these reactions.

Methods: Naproxen and desmethylnaproxen glucuronidation were investigated using microsomes from six and five livers, respectively. Human recombinant UGTs were screened for activity towards naproxen and desmethylnaproxen.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkk2lbca0bc5p0k4mm3u44otci6ucop23): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once