Publications by authors named "David J Earnest"

Background: Disturbances of the sleep-wake cycle and other circadian rhythms typically precede the age-related deficits in learning and memory, suggesting that these alterations in circadian timekeeping may contribute to the progressive cognitive decline during aging. The present study examined the role of immune cell activation and inflammation in the link between circadian rhythm dysregulation and cognitive impairment in aging.

Methods: C57Bl/6J mice were exposed to shifted light-dark (LD) cycles (12 h advance/5d) during early adulthood (from ≈ 4-6mo) or continuously to a "fixed" LD12:12 schedule.

View Article and Find Full Text PDF

Healthy individuals exhibit blood pressure variation over a 24-hour period with higher blood pressure during wakefulness and lower blood pressure during sleep. Loss or disruption of the blood pressure circadian rhythm has been linked to adverse health outcomes, for example, cardiovascular disease, dementia, and chronic kidney disease. However, the current diagnostic and therapeutic approaches lack sufficient attention to the circadian rhythmicity of blood pressure.

View Article and Find Full Text PDF

Preclinical quantitative models of cognitive performance are necessary for translation from basic research to clinical studies. In rodents, non-cognitive factors are a potential influence on testing outcome and high variability in behavior requires multiple time point testing for better assessment of performance in more sophisticated tests. Thus, these models have limited translational value as most human cognitive tests characterize cognition using single digit scales to distinguish between impaired and unimpaired function.

View Article and Find Full Text PDF

Shift work is associated with increased risk for vascular disease, including stroke- and cardiovascular-related mortality. However, evidence from these studies is inadequate to distinguish the effect of altered circadian rhythms in isolation from other risk factors for stroke associated with shift work (e.g.

View Article and Find Full Text PDF

The antidepressant drug amitriptyline is used in the treatment of clinical depression and a variety of neurological conditions such as anxiety, neuropathic pain disorders and migraine. Antidepressants are associated with both therapeutic and untoward effects, and their use in the elderly has tripled since the mid-1990s. Because of this widespread use, we are interested in testing the acute effects of amitriptyline on synaptic transmission at therapeutic concentrations well below those that block voltage-gated calcium channels.

View Article and Find Full Text PDF

Proinflammatory signaling cascades have been implicated in the mechanism by which high fat diet (HFD) and saturated fatty acids (SFA) modulate fundamental circadian properties of peripheral clocks. Because the cytokines TNFα and IL-6 are key signals in HFD- and SFA-induced proinflammatory responses that ultimately lead to systemic insulin resistance, the present study examined the roles of these cytokines in the feedback modulation of peripheral circadian clocks by the proinflammatory SFA, palmitate. IL-6 and TNFα secretion in Bmal1-dLuc fibroblast cultures was increased during palmitate treatment although the time course and amplitude of the inductive response differed between these cytokines.

View Article and Find Full Text PDF

Following publication of the original article [1], we have been notified that the tagging of one of the author names was done incorrectly in the XML version of the paper. The online and pdf versions of this paper are not affected by the change. Original and corrected tagging can be seen below.

View Article and Find Full Text PDF

Based on genetic models with mutation or deletion of core clock genes, circadian disruption has been implicated in the pathophysiology of metabolic disorders. Thus, we examined whether circadian desynchronization in response to shift work-type schedules is sufficient to compromise metabolic homeostasis and whether inflammatory mediators provide a key link in the mechanism by which alterations of circadian timekeeping contribute to diet-induced metabolic dysregulation. In high-fat diet (HFD)-fed mice, exposure to chronic shifts of the light-dark cycle (12 h advance every 5 d): 1) disrupts photoentrainment of circadian behavior and modulates the period of spleen and macrophage clock gene rhythms; 2) potentiates HFD-induced adipose tissue infiltration and activation of proinflammatory M1 macrophages; 3) amplifies macrophage proinflammatory cytokine expression in adipose tissue and bone marrow-derived macrophages; and 4) exacerbates diet-induced increases in body weight, insulin resistance, and glucose intolerance in the absence of changes in total daily food intake.

View Article and Find Full Text PDF

Background: The circadian clock is the basis for biological time keeping in eukaryotic organisms. The clock mechanism relies on biochemical signaling pathways to detect environmental stimuli and to regulate the expression of clock-controlled genes throughout the body. MAPK signaling pathways function in both circadian input and output pathways in mammals depending on the tissue; however, little is known about the role of p38 MAPK, an established tumor suppressor, in the mammalian circadian system.

View Article and Find Full Text PDF

Inflammatory signaling may play a role in high-fat diet (HFD)-related circadian clock disturbances that contribute to systemic metabolic dysregulation. Therefore, palmitate, the prevalent proinflammatory saturated fatty acid (SFA) in HFD and the anti-inflammatory, poly-unsaturated fatty acid (PUFA), docosahexaenoic acid (DHA), were analyzed for effects on circadian timekeeping and inflammatory responses in peripheral clocks. Prolonged palmitate, but not DHA, exposure increased the period of fibroblast Bmal1-dLuc rhythms.

View Article and Find Full Text PDF

Circadian clock desynchronization has been implicated in the pathophysiology of cardiovascular disease and related risk factors (eg, obesity, diabetes). Thus, we examined the extent to which circadian desynchronization exacerbates ischemic stroke outcomes and whether its detrimental effects on stroke severity and functional impairments are further modified by biological sex. Circadian entrainment of activity rhythms in all male and female rats was observed during exposure to a fixed light-dark (LD) 12:12 cycle but was severely disrupted when this LD cycle was routinely shifted (12 h advance/5 d) for approximately 7 weeks.

View Article and Find Full Text PDF
Article Synopsis
  • miR-142-3p and miR-494 were studied for their role in cell communication and effects on the clock gene Bmal1, showing that their overexpression lowers BMAL1 levels while altering Per2 oscillation periods.
  • The presence of miRNA-enriched medium boosts miR-142-3p inside cells and inhibits Bmal1 activity, suggesting they play a significant role in regulating circadian rhythms.
  • Inhibitors that disrupt vesicle trafficking also affect how these miRNAs communicate between cells, further influencing synchronized circadian clock activity.
View Article and Find Full Text PDF

The circadian clockworks gate macrophage inflammatory responses. Given the association between clock dysregulation and metabolic disorders, we conducted experiments to determine the extent to which over-nutrition modulates macrophage clock function and whether macrophage circadian dysregulation is a key factor linking over-nutrition to macrophage proinflammatory activation, adipose tissue inflammation, and systemic insulin resistance. Our results demonstrate that 1) macrophages from high fat diet-fed mice are marked by dysregulation of the molecular clockworks in conjunction with increased proinflammatory activation, 2) global disruption of the clock genes Period1 (Per1) and Per2 recapitulates this amplified macrophage proinflammatory activation, 3) adoptive transfer of Per1/2-disrupted bone marrow cells into wild-type mice potentiates high fat diet-induced adipose and liver tissue inflammation and systemic insulin resistance, and 4) Per1/2-disrupted macrophages similarly exacerbate inflammatory responses and decrease insulin sensitivity in co-cultured adipocytes in vitro.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small non-coding RNAs that function as post-transcriptional modulators by regulating stability or translation of target mRNAs. Recent studies have implicated miRNAs in the regulation of mammalian circadian rhythms. To explore the role of miRNAs in the post-transcriptional modulation of core clock genes in the master circadian pacemaker, we examined miR-142-3p for evidence of circadian expression in the suprachiasmatic nuclei (SCN), regulation of its putative clock gene target Bmal1 via specific binding sites in the 3' UTR and overexpression-induced changes in the circadian rhythm of BMAL1 protein levels in SCN cells.

View Article and Find Full Text PDF

The neurexin genes (NRXN1/2/3) encode two families (α and β) of highly polymorphic presynaptic proteins that are involved in excitatory/inhibitory synaptic balance. Recent studies indicate that neuronal activation and memory formation affect NRXN1/2/3α expression and alternative splicing at splice sites 3 and 4 (SS#3/SS#4). Neurons in the biological clock residing in the suprachiasmatic nuclei of the hypothalamus (SCN) act as self-sustained oscillators, generating rhythms in gene expression and electrical activity, to entrain circadian bodily rhythms to the 24 hours day/night cycles.

View Article and Find Full Text PDF

Even though peripheral circadian oscillators in the cardiovascular system are known to exist, the daily rhythms of the cardiovascular system are mainly attributed to autonomic or hormonal inputs under the control of the central oscillator, the suprachiasmatic nucleus (SCN). In order to examine the role of peripheral oscillators in the cardiovascular system, we used a transgenic mouse where the Clock gene is specifically disrupted in cardiomyocytes. In this cardiomyocyte-specific CLOCK mutant (CCM) mouse model, the circadian input from the SCN remains intact.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) interact with 3' untranslated region (UTR) elements of target genes to regulate mRNA stability or translation and thus play a role in regulating many different biological processes, including circadian rhythms. However, specific miRNAs mediating the regulation of essential clock genes remain largely unknown. Because vesicles containing membrane-bound miRNAs are present in the circulatory system, we examined miRNAs predicted to target the clock gene, Bmal1, for evidence of rhythmic fluctuations in circulating levels and modulatory effects on the 3' UTR activity of Bmal1.

View Article and Find Full Text PDF

The master circadian pacemaker located within the suprachiasmatic nuclei (SCN) controls neural and neuroendocrine rhythms in the mammalian brain. Astrocytes are abundant in the SCN, and this cell type displays circadian rhythms in clock gene expression and extracellular accumulation of ATP. Still, the intracellular signaling pathways that link the SCN clockworks to circadian rhythms in extracellular ATP accumulation remain unclear.

View Article and Find Full Text PDF

In the mammalian circadian system, cell-autonomous clocks in the suprachiasmatic nuclei (SCN) are distinguished from those in other brain regions and peripheral tissues by the capacity to generate coordinated rhythms and drive oscillations in other cells. To further establish in vitro models for distinguishing the functional properties of SCN and peripheral oscillators, we developed immortalized cell lines derived from fibroblasts and the SCN anlage of mPer2 (Luc) knockin mice. Circadian rhythms in luminescence driven by the mPER2::LUC fusion protein were observed in cultures of mPer2 (Luc) SCN cells and in serum-shocked or SCN2.

View Article and Find Full Text PDF

Transcription factors expressing Per-Arnt-Sim (PAS) domains are key components of the mammalian circadian clockworks found in most cells and tissues. Because these transcription factors interact with other PAS genes mediating xenobiotic metabolism and because toxin responses are often marked by daily variation, we determined whether the toxin-mediated activation of the signaling pathway involving several PAS genes, the aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT), fluctuates rhythmically and whether this diurnal oscillation is affected by targeted disruption of key PAS genes in the circadian clockworks, Period 1 (Per1) and Per2. Treatment with the prototypical Ahr ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), had inductive effects on a key target of AhR signaling, Cyp1A1, in both the mammary gland and liver of all animals.

View Article and Find Full Text PDF

The master circadian pacemaker located within the suprachiasmatic nucleus (SCN) of the mammalian brain controls system-level rhythms in animal physiology. Specific SCN outputs synchronize circadian physiological rhythms in other brain regions. Within the SCN, communication among neural cells provides for the coordination of autonomous cellular oscillations into ensemble rhythms.

View Article and Find Full Text PDF

Neonatal alcohol exposure produces long-term changes in the suprachiasmatic nucleus (SCN) that are presumably responsible for disturbances in the light-dark regulation of circadian behavior in adult rats, including the pattern of photoentrainment, rate of re-entrainment to shifted light-dark cycles, and phase-shifting responses to light. Because SCN neurons containing vasoactive intestinal polypeptide (VIP) receive direct photic input via the retinohypothalamic tract and thus play an important role in the circadian regulation of the SCN clock mechanism by light, the present study examined the long-term effects of neonatal alcohol exposure on VIP neuronal populations within the SCN of adult rats. Male Sprague-Dawley rat pups were exposed to alcohol (EtOH; 3.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT) are transcription factors that express Per-Arnt-Sim (PAS) DNA-binding motifs and mediate the metabolism of drugs and environmental toxins in the liver. Because these transcription factors interact with other PAS genes in molecular feedback loops forming the mammalian circadian clockworks, we determined whether targeted disruption or siRNA inhibition of Per1 and Per2 expression alters toxin-mediated regulation of the AhR signaling pathway in the mouse liver and Hepa1c1c7 hepatoma cells in vitro. Treatment with the prototypical Ahr ligand, 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), had inductive effects on the primary targets of AhR signaling, Cyp1A1 and Cyp1B1, in the liver of all animals, but genotype-based differences were evident such that the toxin-mediated induction of Cyp1A1 expression was significantly greater (2-fold) in mice with targeted disruption of Per1 (Per1(ldc) and Per1(ldc)/Per2(ldc)).

View Article and Find Full Text PDF

Background: In rats, alcohol exposure during the period of rapid brain growth produces long-term changes in the free-running period, photoentrainment and phase-shifting responses of the circadian rhythm in wheel-running behavior. To determine whether these alterations in circadian behavior are associated with permanent damage to the circadian timekeeping mechanism or reconfiguration of its molecular components, we examined the long-term effects of neonatal alcohol exposure on clock gene rhythms in the pacemaker located in the suprachiasmatic nucleus (SCN) and in other brain or peripheral tissues of adult rats.

Methods: Artificially reared male rat pups were exposed to alcohol (4.

View Article and Find Full Text PDF

The biological effects of many environmental toxins are mediated by genes containing Per-Arnt-Sim (PAS) domains, the aryl hydrocarbon receptor (AhR), and AhR nuclear translocator. Because these transcription factors interact with other PAS genes that form the circadian clockworks in mammals, we determined whether targeted disruption of the clock genes, Per1 and/or Per2, alters toxin-induced expression of known biological markers in the AhR signaling pathway. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a prototypical Ahr agonist, had an inductive effect on mammary gland expression of cytochrome P450, subfamily I, polypeptide 1 (Cyp1A1) mRNA regardless of genotype.

View Article and Find Full Text PDF