The most common equine tapeworm, , has often been neglected amongst molecular investigations and has been faced with limited treatment options. However, the recent release of a transcriptome dataset has now provided opportunities for in-depth analysis of protein expression. Here, global, and sub-proteomic approaches were utilized to provide a comprehensive characterization of the soluble glutathione transferases (GST) (ApGST).
View Article and Find Full Text PDFSigma class GST (Prostaglandin D synthase), FhGST-S1, is present in the excretory-secretory products (ES) of the liver fluke parasite Fasciola hepatica as cargo of extracellular vesicles (EVs) released by the parasite. FhGST-S1 has a well characterised role in the modulation of the immune response; a key fluke intercession that allows for establishment and development within their hosts. We have resolved the three-dimensional structure of FhGST-S1 in complex with its co-factor glutathione, in complex with a glutathione-cysteine adduct, and in a glutathione disulfide complex in order to initiate a research pipeline to mechanistically understand how FhGST-S1 functions within the host environment and to rationally design selective inhibitors.
View Article and Find Full Text PDFBackground: The debilitating human disease schistosomiasis is caused by infection with schistosome parasites that maintain a complex lifecycle alternating between definitive (human) and intermediate (snail) hosts. While much is known about how the definitive host responds to schistosome infection, there is comparably less information available describing the snail's response to infection.
Methodology/principle Findings: Here, using information recently revealed by sequencing of the Biomphalaria glabrata intermediate host genome, we provide evidence that the predicted core snail DNA methylation machinery components are associated with both intra-species reproduction processes and inter-species interactions.