Publications by authors named "David J Currie"

Protecting biomass carbon stocks to mitigate climate change has direct implications for biodiversity conservation. Yet, evidence that a positive association exists between carbon density and species richness is contrasting. Here, we test how this association varies (1) across spatial extents and (2) as a function of how strongly carbon and species richness depend on environmental variables.

View Article and Find Full Text PDF

Species' geographic ranges could primarily be physiological tolerances drawn in space. Alternatively, geographic ranges could be only broadly constrained by physiological climatic tolerances: there could generally be much more proximate constraints on species' ranges (dispersal limitation, biotic interactions, etc.) such that species often occupy a small and unpredictable subset of tolerable climates.

View Article and Find Full Text PDF

It is generally assumed that, when natural habitat is converted to human-dominated land cover, such habitat is lost to its native species. Most literature assumes that species richness should vary as a function of remaining natural area, following the well-known species-area relationship (i.e.

View Article and Find Full Text PDF

Broad-scale geographical variation in species richness is strongly correlated with climate, yet the mechanisms underlying this correlation are still unclear. We test two broad classes of hypotheses to explain this pattern. Bottom-up hypotheses propose that the environment determines individual species' ranges.

View Article and Find Full Text PDF

is it more effective to give large grants to a few elite researchers, or small grants to many researchers? Large grants would be more effective only if scientific impact increases as an accelerating function of grant size. Here, we examine the scientific impact of individual university-based researchers in three disciplines funded by the Natural Sciences and Engineering Research Council of Canada (NSERC). We considered four indices of scientific impact: numbers of articles published, numbers of citations to those articles, the most cited article, and the number of highly cited articles, each measured over a four-year period.

View Article and Find Full Text PDF

It is critical to assess the effectiveness of the tools used to protect endangered species. The main tools enabled under the U.S.

View Article and Find Full Text PDF

The influence of regional and local processes on community structure is a major focus of ecology. Classically, ecologists have used local-regional richness regressions to evaluate the role of local and regional processes in determining community structure, an approach that has numerous flaws. Here, we implemented a novel trait-based approach that treats local and regional influences as a continuum, rather than a dichotomy.

View Article and Find Full Text PDF

Understanding the causes of spatial variation in species richness is a major research focus of biogeography and macroecology. Gridded environmental data and species richness maps have been used in increasingly sophisticated curve-fitting analyses, but these methods have not brought us much closer to a mechanistic understanding of the patterns. During the past two decades, macroecologists have successfully addressed technical problems posed by spatial autocorrelation, intercorrelation of predictor variables and non-linearity.

View Article and Find Full Text PDF

The latitudinal diversity gradient has been hypothesized to reflect past evolutionary dynamics driven by climatic niche conservation during cladogenesis, i.e. the tropical conservatism hypothesis.

View Article and Find Full Text PDF

This work evaluates three techniques of calibrating capacitance (dielectric) spectrometers used for on-line monitoring of biomass: modeling of cell properties using the theoretical Cole-Cole equation, linear regression of dual-frequency capacitance measurements on biomass concentration, and multivariate (PLS) modeling of scanning dielectric spectra. The performance and robustness of each technique is assessed during a sequence of validation batches in two experimental settings of differing signal noise. In more noisy conditions, the Cole-Cole model had significantly higher biomass concentration prediction errors than the linear and multivariate models.

View Article and Find Full Text PDF

Anthropogenic global changes threaten species and the ecosystem services upon which society depends. Effective solutions to this multifaceted crisis need scientific responses spanning disciplines and spatial scales. Macroecology develops broad-scale predictions of species' distributions and abundances, complementing the frequently local focus of global change biology.

View Article and Find Full Text PDF

How many species in a given taxon should be found in a delimited area in a specified place in the world? Some recent literature suggests that the answer to this question depends strongly on the geographical, evolutionary, and ecological context. For example, current theory suggests that species accumulate as a function of area differently on continents and islands. Species richness-climate relationships have been examined separately on continents and on islands.

View Article and Find Full Text PDF

Species richness varies enormously across geographical gradients, a well-known phenomenon for which there are many hypothesized explanations. One recent hypothesis uses null models to demonstrate that random re-distribution of species' ranges within a given domain leads to a 'mid-domain effect' (MDE): increasing species richness towards the centre of the area. Madagascar is especially well-suited for empirical evaluation of mid-domain models by virtue of its large endemic fauna and its clearly defined boundaries.

View Article and Find Full Text PDF

It is commonly asserted in the ecological and economic literature that habitat loss is the main cause of loss of imperiled species. The evidence clearly shows that habitat loss is a common contributing factor, but there is little evidence that it is the most important factor. Studies that have focused on the mechanisms of species loss have failed to produce models capable of predicting patterns of loss as a function of human activities.

View Article and Find Full Text PDF

Species richness, the simplest index of biodiversity, varies greatly over broad spatial scales. Richness-climate relationships often account for >80% of the spatial variance in richness. However, it has been suggested that richness-climate relationships differ significantly among geographic regions and that there is no globally consistent relationship.

View Article and Find Full Text PDF