Publications by authors named "David J Bernard"

Choline contributes to the biogenesis of methyl groups, neurotransmitters, and cell membranes. Our genome-wide association study (GWAS) of circulating choline in 2228 college students found that alleles in SLC25A48 (rs6596270) influence choline concentrations in men (p = 9.6 × 10), but not women.

View Article and Find Full Text PDF

One-carbon metabolism is a complex network of metabolic reactions that are essential for cellular function including DNA synthesis. Vitamin B12 and folate are micronutrients that are utilized in this pathway and their deficiency can result in the perturbation of one-carbon metabolism and subsequent perturbations in DNA replication and repair. This effect has been well characterized in nuclear DNA but to date, mitochondrial DNA (mtDNA) has not been investigated extensively.

View Article and Find Full Text PDF

The analysis of somatic variation in the mitochondrial genome requires deep sequencing of mitochondrial DNA. This is ordinarily achieved by selective enrichment methods, such as PCR amplification or probe hybridization. These methods can introduce bias and are prone to contamination by nuclear-mitochondrial sequences (NUMTs), elements that can introduce artefacts into heteroplasmy analysis.

View Article and Find Full Text PDF

In humans, poor nutrition, malabsorption and variation in cobalamin (vitamin B12) metabolic genes are associated with hematological, neurological and developmental pathologies. Cobalamin is transported from blood into tissues via the transcobalamin (TC) receptor encoded by the CD320 gene. We created mice carrying a targeted deletion of the mouse ortholog, Cd320.

View Article and Find Full Text PDF

Background: Folic acid supplementation reduces the risk of neural tube defects and congenital heart defects. The biological mechanisms through which folate prevents birth defects are not well understood. We explore the use of zebrafish as a model system to investigate the role of folate metabolism during development.

View Article and Find Full Text PDF

Mutations in the human OCRL gene, which encodes a phosphatidylinositol(4,5)bisphosphate 5-phosphatase, result in the X-linked oculocerebrorenal syndrome of Lowe. Mice with a targeted disruption of Ocrl have no phenotypic abnormalities. Targeted disruption of its closest paralog, Inpp5b, causes male infertility in the 129S6 background.

View Article and Find Full Text PDF

Alpha-synuclein (SNCA) gene has been implicated in the development of rare forms of familial Parkinson disease (PD). Recently, it was shown that an increase in SNCA copy numbers leads to elevated levels of wild-type SNCA-mRNA and protein and is sufficient to cause early-onset, familial PD. A critical question concerning the molecular pathogenesis of PD is what contributory role, if any, is played by the SNCA gene in sporadic PD.

View Article and Find Full Text PDF

Alpha-synuclein was implicated in Parkinson's disease when missense mutations in the alpha-synuclein gene were found in autosomal dominant Parkinson's disease and alpha-synuclein was shown to be a major constituent of protein aggregates in sporadic Parkinson's disease and other synucleinopathies. We have generated transgenic mice expressing A53T mutant and wild-type human alpha-synuclein. The mutant transgenic protein was distributed abnormally to the axons, perikarya, and dendrites of neurons in many brain areas.

View Article and Find Full Text PDF

Batten disease or JNCL, is the juvenile form of Neuronal Ceroid Lipofuscinosis (NCL) an autosomal recessive neurodegenerative disorder. Since retinal degeneration is an early consequence of Batten disease, we examined the eyes of Cln3 knockout mice (1-20 months of age), along with heterozygotes and appropriate controls, to determine whether or not the Cln3 defect would lead to characteristic retinal degeneration and visual loss. Accumulation of autofluorescent material and intracellular inclusions were markedly increased in Cln3 knockout retinal ganglion cells, as well as most other nuclear layers.

View Article and Find Full Text PDF

The dynamic nature of cellular interactions during differentiation of germ cells and their translocation from the basement membrane to the lumen of the seminiferous tubules requires the existence of complex and well-regulated cellular adhesion mechanisms in the testis. Successful migration of the developing germ cells is characterized by dynamic breakage and reformation of cadherin-containing adherens junctions between the germ cells and Sertoli cells, the polarized somatic cells of the testis that support and nourish the developing gametes. Here, we demonstrate the accumulation of abnormally swollen, actin-coated, endosome-like structures that contain intact adherens junctions and stain positive for N-cadherin and beta-catenin in the Sertoli cell cytosol of mice deficient in Inpp5b, an inositol polyphosphate 5-phosphatase.

View Article and Find Full Text PDF