Publications by authors named "David J Bailey"

Background: This study investigates maternal and perinatal outcomes for women with low-risk pregnancies laboring in free-standing birth centers compared with laboring in a hospital maternity unit in a large New Zealand health district.

Methods: The study used observational data from 47 381 births to women with low-risk pregnancies in South Auckland maternity facilities 2003-2010. Adjusted odds ratios with 95% confidence intervals were calculated for instrumental delivery, cesarean section, blood transfusion, neonatal unit admission, and perinatal mortality.

View Article and Find Full Text PDF

The estrogen-synthesizing enzyme aromatase is abundant at the synapse in the zebra finch hippocampus (HP), and its inhibition impairs spatial memory function. To more fully test the role of local estradiol (E2) synthesis in memory, the HP of adult male zebra finches was exposed to either control pellets or those containing the aromatase inhibitor 1,4,6-androstatriene-3,17-dione (ATD), ATD and E2, ATD and the G protein-coupled estrogen receptor (GPER) agonist G1, or the antagonist G15 alone. Birds were tested for spatial memory acquisition and performance, and HP levels of the postsynaptic protein PSD95 were measured.

View Article and Find Full Text PDF

Cardiac lipomas are rare and usually present as benign, encapsulated masses outside the heart; however, they can also be found within the atria. No single theory-including molecular genetic mutation-adequately explains why this occurs. Extensive career experience and broadened knowledge in embryology and cardiac physiology have helped us to develop a hypothesis based on invagination of extracardiac tumors.

View Article and Find Full Text PDF

This article is part of a Special Issue "Estradiol and cognition". In addition to their well-studied and crucial effects on brain development and aging, an increasing number of investigations across vertebrate species indicate that estrogens like 17β-estradiol (E2) have pronounced and rapid effects on cognitive function. The incidence and regulation of the E2-synthesizing enzyme aromatase at the synapse in regions of the brain responsible for learning, memory, social communication and other complex cognitive processes suggest that local E2 production and action affect the acute and chronic activity of individual neurons and circuits.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is common among emergency department patients admitted to hospital. There is evidence of inadequate management of the condition leading to adverse outcomes. We present an illustrative case of AKI complicating a gastrointestinal disorder in an older adult.

View Article and Find Full Text PDF

Recent studies have revealed the presence and regulation of aromatase at the vertebrate synapse, and identified a critical role played by presynaptic estradiol synthesis in the electrophysiological response to auditory and other social cues. However, if and how synaptic aromatization affects behavior remains to be directly tested. We have exploited 3 characteristics of the zebra finch hippocampus (HP) to test the role of synaptocrine estradiol provision on spatial memory function.

View Article and Find Full Text PDF

The hippocampus (HP) in zebra finches (Taeniopygia guttata) is important in the consolidation of spatial memories. Chronic, elevated levels of steroid hormones, like the glucocorticoids, can decrease this type of memory function in birds and mammals; neuronal atrophy, loss, and a decrease in synaptic contacts in the mammalian HP are observed as the underlying cause. Calbindin-D28k is constitutively expressed in cells of the nervous system but increases in concentration following a neurotoxic insult, protecting neurons against apoptotic cell death.

View Article and Find Full Text PDF

Memory in songbirds, from song learning, production, and recognition to that for locations in complex environments, has led to the attractiveness of these animals as model systems for the changes occurring within and between neurons that lead to relevant modifications in behavior. Zebra finches () in particular are excellent models attributable to their ability to readily perform the above-mentioned, ecologically relevant memories in the laboratories, and the ease with which these stereotyped behaviors can be manipulated and measured. This review centers on the independent functioning of and possible interactions between two primary memory systems in songbirds: those important for song or "procedural" memories, as well as those for place, such as food location, a "spatial" or "episodic-like" memory.

View Article and Find Full Text PDF

Songbirds demonstrate song- and spatial-learning, forms of memory that appear distinct in formal characteristics and fitting the descriptions and criteria of procedural and episodic-like memory function, respectively. As in other vertebrates, the neural pathways underlying these forms of memory may also be dissociable, and include the corresponding song circuit and hippocampus (HP). Whether (or not) these two memory systems interact is unknown.

View Article and Find Full Text PDF

Mechanical or anoxic/ischemic brain insult results in reactive gliosis and a pronounced wave of apoptotic secondary degeneration (WSD). Reactive glia express aromatase (estrogen synthase) and glial estrogen synthesis decreases apoptosis and the volume of degeneration. Whether aromatization by glia affects gliosis itself or the initiation/maintenance of the WSD remains unknown.

View Article and Find Full Text PDF

In the brains of male zebra finches (Taeniopygia guttata), the nuclei that direct song learning and production are larger than the corresponding regions in females, who do not sing. The dimorphism in Area X of the medial striatum (MSt), an area important for song learning, is even more dramatic in that it is identifiable in males but not females by Nissl stain. In the present study, conspecific song, but not other auditory stimuli, induced expression of the immediate early gene ZENK in the MSt surrounding but not within Area X in juvenile males (30 and 45 days post-hatch).

View Article and Find Full Text PDF

Male zebra finches (Taeniopygia guttata) begin to sing around 45 days posthatch (d45) and tune their songs to match learned templates. Females never develop song, but they use male conspecific vocalizations for mate choice. While auditory perception is critical for both sexes, the responses of the immediate early genes (IEGs) ZENK and FOS differ in auditory brain areas of d30 males and females.

View Article and Find Full Text PDF

Background: Women referred to secondary care with suspected pregnancy-induced hypertension (PIH) are commonly investigated with blood tests and cardiotocography (CTG), regardless of the clinical severity of their condition. Over-investigation might lead to inappropriate intervention.

Aims: To investigate how often abnormal blood test and CTG results occur in women with pre-eclampsia and gestational hypertension and in women who do not have pregnancy-induced hypertension.

View Article and Find Full Text PDF

Pregnancy is not contraindicated in renal transplant recipients with stable renal function, and a successful and healthy obstetric outcome can be expected in 95% of such cases. The incidence of both maternal and fetal complications is related to the degree of graft dysfunction and/or hypertension prior to pregnancy. Poorer prognosis is associated with poorer renal function.

View Article and Find Full Text PDF

The brains of adult zebra finches (Taeniopygia guttata) are tuned to the songs of conspecifics. In adult males, the caudomedial neostriatum (NCM) responds to zebra finch song, and in adult females the NCM and hippocampus (HP) are active following exposure to zebra finch song more than other auditory stimuli. The caudal hyperstriatum ventrale (cHV) in both sexes also responds to song, but in females not as selectively as the NCM and HP.

View Article and Find Full Text PDF

The perception of song is vital to the reproductive success of both male and female songbirds. Several neural structures underlying this perception have been identified by examining expression of immediate early genes (IEGs) following the presentation of conspecific or heterospecific song. In the few avian species investigated, areas outside of the circuit for song production contain neurons that are active following song presentation, specifically the caudal hyperstriatum ventrale (cHV) and caudomedial neostriatum (NCM).

View Article and Find Full Text PDF

Benzodiazepine pharmacology has led to greater insight into the neural mechanisms underlying learning and anxiety. The synthesis of new compounds capable of modulating responses produced by these receptors has been made possible by the development of an isoform model of the GABA(A)/benzodiazepine receptor complex. In the current experiment, rats were pretreated with several concentrations of the novel ligand RY024 (an alpha 5 beta 2 gamma 2 -selective benzodiazepine receptor inverse agonist) in the hippocampus and were trained in a Pavlovian fear conditioning paradigm.

View Article and Find Full Text PDF