The aqueous zinc-sulfur battery holds promise for significant capacity and energy density with low cost and safe operation based on environmentally benign materials. However, it suffers from the sluggish kinetics of the conversion reaction. Here, we highlight the efficacy of molybdenum(IV) sulfide (MoS) to reduce the overpotential of S-ZnS conversion in aqueous electrolytes and study the discharge products formed at the solid-solid and solid-liquid interfaces using experimental and theoretical approaches.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2023
Two-dimensional (2D) siloxene (SiOH) has shown promise as a negative electrode material for Li-ion batteries due to its high gravimetric capacity and superior mechanical properties under (de)lithiation compared to bulk Si. In this work, we prepare purified siloxene nanosheets through the removal of bulk Si contaminants, use ultrasonication to control the lateral size and thickness of the nanosheets, and probe the effects of the resulting morphology and purity on the electrochemistry. The thin siloxene nanosheets formed after 4 h of ultrasonication deliver an average capacity of 810 mA h/g under a 1000 mA/g rate over 200 cycles with a capacity retention of 76%.
View Article and Find Full Text PDFZinc (Zn)-anode batteries, although safe and non-flammable, are precluded from promising applications because of their low voltage (<2 V) and poor rechargeability. Here, we report the fabrication of rechargeable membrane-less Zn-anode batteries with high voltage properties (2.5 to 3.
View Article and Find Full Text PDFZinc (Zn)-manganese dioxide (MnO) rechargeable batteries have attracted research interest because of high specific theoretical capacity as well as being environmentally friendly, intrinsically safe and low-cost. Liquid electrolytes, such as potassium hydroxide, are historically used in these batteries; however, many failure mechanisms of the Zn-MnO battery chemistry result from the use of liquid electrolytes, including the formation of electrochemically inert phases such as hetaerolite (ZnMnO) and the promotion of shape change of the Zn electrode. This manuscript reports on the fundamental and commercial results of gel electrolytes for use in rechargeable Zn-MnO batteries as an alternative to liquid electrolytes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2020
Alkaline zinc-manganese dioxide (Zn-MnO) batteries are well suited for grid storage applications because of their inherently safe, aqueous electrolyte and established materials supply chain, resulting in low production costs. With recent advances in the development of Cu/Bi-stabilized birnessite cathodes capable of the full 2-electron capacity equivalent of MnO (617 mA h/g), there is a need for selective separators that prevent zincate (Zn(OH)) transport from the anode to the cathode during cycling, as this electrode system fails in the presence of dissolved zinc. Herein, we present the synthesis of -butylimidazolium-functionalized polysulfone (NBI-PSU)-based separators and evaluate their ability to selectively transport hydroxide over zincate.
View Article and Find Full Text PDF