Publications by authors named "David Irlbeck"

Latency reversal strategies for HIV cure using inhibitor of apoptosis protein (IAP) antagonists (IAPi) induce unprecedented levels of latent reservoir expression without immunotoxicity during suppressive antiretroviral therapy (ART). However, full targeting of the reservoir may require combinatorial approaches. A Jurkat latency model screen for IAPi combination partners demonstrated synergistic latency reversal with bromodomain (BD) and extraterminal domain protein inhibitors (BETi).

View Article and Find Full Text PDF

Among CD4 T cells, T helper 17 (Th17) cells are particularly susceptible to HIV-1 infection and are depleted from mucosal sites, which causes damage to the gut barrier, resulting in a microbial translocation-induced systemic inflammation, a hallmark of disease progression. Furthermore, a proportion of latently infected Th17 cells persist long term in the gastrointestinal lymphatic tract where a low-level HIV-1 transcription is observed. This residual viremia contributes to chronic immune activation.

View Article and Find Full Text PDF
Article Synopsis
  • Long-lasting CD4 T cells infected with HIV pose a major challenge for finding a cure, as they can survive even with long-term antiretroviral therapy (ART).
  • Inducing HIV from its latent state could help reduce the viral reservoir faster, but previous efforts focused mainly on blood rather than tissue sites and showed limited success.
  • The study demonstrates that activating the non-canonical NF-κB pathway with AZD5582 effectively triggers HIV expression in multiple tissues, enhancing potential strategies for HIV eradication when combined with treatments for viral clearance.
View Article and Find Full Text PDF

A new class of betulin-derived α-keto amides was identified as HIV-1 maturation inhibitors. Through lead optimization, GSK8999 was identified with IC values of 17nM, 23nM, 25nM, and 8nM for wild type, Q369H, V370A, and T371A respectively. When tested in a panel of 62 HIV-1 isolates covering a diversity of CA-SP1 genotypes including A, AE, B, C, and G using a PBMC based assay, GSK8999 was potent against 57 of 62 isolates demonstrating an improvement over the first generation maturation inhibitor BVM.

View Article and Find Full Text PDF

A macrocycle provides diverse functionality and stereochemical complexity in a conformationally preorganized ring structure, and it occupies a unique chemical space in drug discovery. However, the synthetic challenge to access this structural class is high and hinders the exploration of macrocycles. In this study, efficient synthetic routes to macrocyclized betulin derivatives have been established.

View Article and Find Full Text PDF

Background: In 2009, a retrospective study reported the detection of xenotropic murine leukemia virus-related virus (XMRV) in clinical isolates derived from individuals with chronic fatigue syndrome or myalgic encephalomyelitis (CFS). While many efforts to confirm this observation failed, one report detected polytropic murine leukemia virus (pMLV), instead of XMRV. In both studies, Polymerase Chain Reaction (PCR)-based methods were employed which could provide the basis for the development of a practical diagnostic tool.

View Article and Find Full Text PDF

Resistance-associated mutations in the HIV-1 protease modify viral fitness through changes in the catalytic activity and altered binding affinity for substrates and inhibitors. In this report, we examine the effects of 31 mutations at 26 amino acid positions in protease to determine their impact on infectivity and protease inhibitor sensitivity. We found that primary resistance mutations individually decrease fitness and generally increase sensitivity to protease inhibitors, indicating that reduced virion-associated protease activity reduces virion infectivity and the reduced level of per virion protease activity is then more easily titrated by a protease inhibitor.

View Article and Find Full Text PDF

In HBV/HIV-coinfected patients, the risk of end-stage liver disease and death is increased. This open-label, prospective, pilot study evaluated abacavir/lamivudine/zidovudine twice daily plus tenofovir once daily in HBV/HIV-coinfected antiretroviral-naïve subjects. Nine adults (8 males) enrolled, with baseline mean HIV-1 RNA = 4.

View Article and Find Full Text PDF

The CCR100136 (EPIC) study evaluated the antiviral activity of the novel CCR5 entry inhibitor aplaviroc in combination with lopinavir-ritonavir in drug-naïve human immunodeficiency virus type 1-infected subjects. Although the trial was stopped prematurely due to idiosyncratic hepatotoxicity, 11 subjects met the protocol-defined virologic failure criteria. Clonal analyses of the viral envelope tropism, aplaviroc susceptibility, and env sequencing were performed on plasma at day 1 and at the time of virologic failure.

View Article and Find Full Text PDF

The CCR102881 (ASCENT) study evaluated the antiviral activity of the novel CCR5 entry inhibitor aplaviroc plus a fixed-dose combination of lamivudine-zidovudine (Combivir) in drug-naïve human immunodeficiency virus type 1-infected subjects with only CCR5-tropic virus detected in plasma. Although the trial was stopped prematurely due to idiosyncratic hepatotoxicity, eight subjects met protocol-defined virologic failure criteria. Clonal analyses of the viral envelope tropism, aplaviroc susceptibility, and env sequencing were performed on plasma at baseline and at the time of virologic failure.

View Article and Find Full Text PDF

Thymidine-sparing triple-nucleoside regimens have exhibited poor virologic response despite apparent phenotypic susceptibility to 2 of 3 regimen components at early time points. Phenotypic resistance masking by wild-type virus may explain this discrepancy.Consistent with this notion were (1) the presence of low level nucleoside reverse-transcriptase inhibitor-resistant human immunodeficiency virus in subjects receiving failing first-line regimens consisting of tenofovir (TDF), abacavir (ABC), and lamivudine (3TC); (2) lower fold resistance associated with mixtures versus mutants in a clinical-isolate database; and (3) dose dependent changes in susceptibility to ABC, 3TC, TDF, and didanosine on titration of K65R and/or M184V with wild-type virus.

View Article and Find Full Text PDF

Background: Transmitted HIV-1 drug resistance can compromise initial antiretroviral therapy (ART); therefore, its detection is important for patient management. The absence of drug-associated selection pressure in treatment-naïve persons can cause drug-resistant viruses to decline to levels undetectable by conventional bulk sequencing (minority drug-resistant variants). We used sensitive and simple tests to investigate evidence of transmitted drug resistance in antiretroviral drug-naïve persons and assess the clinical implications of minority drug-resistant variants.

View Article and Find Full Text PDF

Objective: HIV-1 utilizes CD4 and either chemokine (C-C motif) receptor 5 (CCR5) or chemokine (C-X-C motif) receptor 4 (CXCR4) to gain entry into host cells. Small molecule CCR5 antagonists are currently being developed for the treatment of HIV-1 infection. Because HIV-1 may also use CXCR4 for entry, the use of CCR5 entry inhibitors is controversial for patients harboring CCR5-using and CXCR4-using (dual/mixed-tropic) viruses.

View Article and Find Full Text PDF

Background: HIV-associated encephalopathy (HIV-AE) is a severe neurologic condition that affects HIV-infected children. The potential benefit of antiretroviral (ARV) agents with good cerebrospinal fluid (CSF) penetration remains to be defined. Abacavir (ABC) achieves good CSF concentrations and studies of high-dose ABC showed benefit in adults with HIV dementia.

View Article and Find Full Text PDF

Objective: To compare alternative class-sparing antiretroviral regimens in treatment-naive subjects.

Design: Open-label, multicenter, randomized trial of up to 3 consecutive treatment regimens over 96 weeks.

Methods: Two hundred ninety-one subjects received abacavir (ABC) and lamivudine and efavirenz (nonnucleoside reverse transcriptase inhibitors [NNRTIs]), ritonavir-boosted amprenavir (protease inhibitor [PI]), or stavudine (nucleoside reverse transcriptase inhibitor [NRTI]) by random assignment.

View Article and Find Full Text PDF

Protease inhibitors represent some of the most potent agents available for therapeutic strategies designed to inhibit human immunodeficiency virus type 1 (HIV-1) replication. Under certain circumstances the virus develops resistance to the inhibitor, thereby negating the benefits of this therapy. We have carried out selections for high-level resistance to each of three protease inhibitors (indinavir, ritonavir, and saquinavir) in cell culture.

View Article and Find Full Text PDF