Publications by authors named "David Ibanez"

A new spectroelectrochemical two-enzyme sensor system has been developed for the detection of acetaldehyde in wine. A combination of spectroscopy and electrochemistry improves the analytical features of the electrochemical sensor because the optical information collected with this system is only associated with acetaldehyde and avoids the interferents also present in wines as polyphenols. Spectroelectrochemical detection is achieved by the analysis of the optical properties of the K[Fe(CN)]/K[Fe(CN)] redox couple involved in the enzymatic process: aldehyde dehydrogenase catalyzes the aldehyde oxidation using β-nicotinamide adenine dinucleotide hydrate (NAD) as a cofactor and, simultaneously, diaphorase reoxidizes the NADH formed in the first enzymatic process due to the presence of K[Fe(CN)].

View Article and Find Full Text PDF

After fertilization, the quiescent zygote experiences a burst of genome activation that initiates a short-lived totipotent state. Understanding the process of totipotency in human cells would have broad applications. However, in contrast to in mice, demonstration of the time of zygotic genome activation or the eight-cell (8C) stage in in vitro cultured human cells has not yet been reported, and the study of embryos is limited by ethical and practical considerations.

View Article and Find Full Text PDF

Objectives: Coronavirus disease 2019 (COVID-19) survivors are reporting residual abnormalities after discharge from hospital. Limited information is available about this stage of recovery or the lingering effects of the virus on pulmonary function and inflammation. This study aimed to describe lung function in patients recovering from COVID-19 hospitalization and to identify biomarkers in serum and induced sputum samples from these patients.

View Article and Find Full Text PDF

Enhancement of Raman intensity due to the electrochemical surface-enhanced Raman scattering (EC-SERS) effect is an interesting alternative to overcome the lack of sensitivity traditionally associated with Raman spectroscopy. Furthermore, activation of metallic screen-printed electrodes (SPEs) by electrochemical route leads to the reproducible generation of nanostructures with excellent SERS properties. EC-SERS procedure proposed in this work for the detection of several pesticides (thiram, imidacloprid and chlorpyrifos) with different nature, uses gold SPEs as SERS substrates, but also includes a preconcentration step as the initial and essential stage.

View Article and Find Full Text PDF

Mouse embryonic stem cells cultured with MEK (mitogen-activated protein kinase kinase) and GSK3 (glycogen synthase kinase 3) inhibitors (2i) more closely resemble the inner cell mass of preimplantation blastocysts than those cultured with SL [serum/leukemia inhibitory factor (LIF)]. The transcriptional mechanisms governing this pluripotent ground state are unresolved. Release of promoter-proximal paused RNA polymerase II (Pol2) is a multistep process necessary for pluripotency and cell cycle gene transcription in SL.

View Article and Find Full Text PDF

A detailed analysis of the ECL interaction between luminol and tris(2,2'-bipyridyl)dichlororuthenium(ii) (Ru(bpy)) is required before using them in ECL systems for multianalyte detection purposes. Spectro-electrochemiluminescence demonstrates that not only must the emission properties be considered, but also their additional optical characteristics are involved in the explanation of the interaction mechanism between these luminophores.

View Article and Find Full Text PDF

Metal phthalocyanines are well-known sensing phases with applications in different scientific fields due to their interesting properties. Detailed characterization by Raman spectroscopy was performed in order to study the shifting of the vibrational bands related to the coordination sphere of each metal phthalocyanine. In this work, a study involving the use of screen-printed electrodes (SPEs) with various metal phthalocyanines to electrochemically detect and quantify chlorine (Cl) gas is presented.

View Article and Find Full Text PDF

Mutations occurring in the gene body of PARK7 (encoding DJ-1/PARK7) cause autosomal recessive early-onset parkinsonism (AREP). These mutations produce a loss of function and have been reported to lead to dopaminergic neuron degeneration in the substantia nigra. However, the underlying mechanisms are largely unknown.

View Article and Find Full Text PDF

Parkinson's disease (PD) is one of the most common neurodegenerative disorders and is characterized by the progressive degeneration of dopaminergic (DA) neurons in the substantia nigra. Loss of function mutations in PARK2 cause familial PD in an autosomal recessive manner. PARK2 encodes an E3 ubiquitin ligase that is involved in regulation of mitochondrial homeostasis.

View Article and Find Full Text PDF

Mutations in the Leucine rich repeat kinase 2 (LRRK2) gene are found in both familial and sporadic Parkinson's disease (PD), and are also associated with immune-related disorders including Crohn's disease (CD) and leprosy. We have generated two homozygous LRRK2 knockout human induced pluripotent stem cell (iPSC) lines using CRISPR-Cas9 in a well-characterized human iPSC clone. The LRRK2 knockout cell lines retained normal morphology, gene expression, and the capacity to differentiate into cell types of the three germ layers.

View Article and Find Full Text PDF

Familial Parkinson's disease (PD) can be caused by deleterious mutations in PINK1 (encoding PINK1) in an autosomal recessive manner. Functional studies suggest that PINK1 works as a regulator of mitochondrial homeostasis. However, how loss of PINK1 induces dopaminergic neuron degeneration is still unclear.

View Article and Find Full Text PDF

Loss of function mutations in PARK2 (encoding PARKIN) cause autosomal recessive Parkinson's disease (PD), which often manifests at a juvenile age. Molecular and biochemical studies show that PARKIN functions as an E3 ubiquitin ligase controlling mitochondrial homeostasis. Yet, the exact mechanisms are unclear due to the use of sub-optimal models including cancer cells and fibroblasts.

View Article and Find Full Text PDF

Raman spectroelectrochemistry based on electrochemical surface-enhanced Raman scattering (EC-SERS) effect is an interesting alternative to overcome the lack of sensitivity of normal Raman spectroscopy. Electrochemical activation of metallic screen-printed electrodes (SPEs) leads to the reproducible generation of nanostructures with excellent SERS properties. In that way, gold SPEs circumvent the traditional reproducibility limitation and produce the enhancement of the Raman intensity to favor the detection of low concentrations.

View Article and Find Full Text PDF

REM Behavior Disorder (RBD) is now recognized as the prodromal stage of α-synucleinopathies such as Parkinson's disease (PD). In this paper, we describe deep learning models for diagnosis/prognosis derived from a few minutes of eyes-closed resting electroencephalography data (EEG) collected at baseline from idiopathic RBD patients ( = 121) and healthy controls (HC, = 91). A few years after the EEG acquisition (4±2 years), a subset of the RBD patients were eventually diagnosed with either PD ( = 14) or Dementia with Lewy bodies (DLB, = 13), while the rest remained idiopathic RBD.

View Article and Find Full Text PDF

NIR spectroelectrochemistry has scarcely been used for deconvolving aqueous mixtures due to the water restriction in this spectral range. However, this work offers an interesting approach for the study of mixtures of molecules with similar electrochemical and spectroscopic behaviour by overcoming the limitations of this hybrid technique. As a proof of concept, the resolution of mixtures of two dyes with similar chemical structures demonstrates the usefulness of NIR spectroelectrochemistry.

View Article and Find Full Text PDF

Familial hypercholesterolemia (FH) is mostly caused by low-density lipoprotein receptor (LDLR) mutations and results in an increased risk of early-onset cardiovascular disease due to marked elevation of LDL cholesterol (LDL-C) in blood. Statins are the first line of lipid-lowering drugs for treating FH and other types of hypercholesterolemia, but new approaches are emerging, in particular PCSK9 antibodies, which are now being tested in clinical trials. To explore novel therapeutic approaches for FH, either new drugs or new formulations, we need appropriate in vivo models.

View Article and Find Full Text PDF

Idiopathic rapid eye movement sleep behavior disorder (RBD) is a serious risk factor for neurodegenerative processes such as Parkinson's disease (PD). We investigate the use of EEG algorithmic complexity derived metrics for its prognosis. We analyzed resting state EEG data collected from 114 idiopathic RBD patients and 83 healthy controls in a longitudinal study forming a cohort in which several RBD patients developed PD or dementia with Lewy bodies.

View Article and Find Full Text PDF

In the version of this Article originally published, in Fig. 2c, the '+' sign and 'OSKM' were superimposed in the label '+OSKM'. In Fig.

View Article and Find Full Text PDF

Somatic cell reprogramming by exogenous factors requires cooperation with transcriptional co-activators and co-repressors to effectively remodel the epigenetic environment. How this interplay is regulated remains poorly understood. Here, we demonstrate that NCoR/SMRT co-repressors bind to pluripotency loci to create a barrier to reprogramming with the four Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC), and consequently, suppressing NCoR/SMRT significantly enhances reprogramming efficiency and kinetics.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) is currently being used for research and treatment of some neurological and neuropsychiatric disorders, as well as for improvement of cognitive functions. In order to better understand cerebral response to the stimulation and to redefine protocols and dosage, its effects must be monitored. To this end, we have used functional diffuse correlation spectroscopy (fDCS) and time-resolved functional near-infrared spectroscopy (TR-fNIRS) together with electroencephalography (EEG) during and after stimulation of the frontal cortex.

View Article and Find Full Text PDF
Article Synopsis
  • Janus structures have unique chemical and physical properties, and new synthesis methods allow for their tailored fabrication based on specific applications.
  • A novel electrochemical method has been developed to enable simultaneous functionalization of both sides of membranes in just one step, overcoming previous limitations.
  • This technique was validated through advanced spectroelectrochemistry and successfully demonstrated with carbon nanotube electrodes, paving the way for innovative designs of Janus materials.
View Article and Find Full Text PDF

Bipolar electrochemistry is receiving growing attention in the last years, not only because it is an important tool for studying electron transfer processes, but also because it is really fruitful in the development of new analytical sensors. Bipolar electrodes show promising applications as a direct analytical tool since oxidation and reduction reactions take place simultaneously on different parts of a single conductor. There are several electrochemical devices that provide information about electron transfer between two immiscible electrolyte solutions, but to the best of our knowledge, this is the first time that a bipolar device is able to record two spectroelectrochemical responses concomitantly at two different compartments.

View Article and Find Full Text PDF

Familial hypercholesterolemia (FH) causes elevation of low-density lipoprotein cholesterol (LDL-C) in blood and carries an increased risk of early-onset cardiovascular disease. A caveat for exploration of new therapies for FH is the lack of adequate experimental models. We have created a comprehensive FH stem cell model with differentiated hepatocytes (iHeps) from human induced pluripotent stem cells (iPSCs), including genetically engineered iPSCs, for testing therapies for FH.

View Article and Find Full Text PDF

Changes in the optical properties of graphene quantum dots (GQD) during electrochemical reduction and oxidation were investigated by photoluminescence (PL) spectroelectrochemistry, which provided direct in situ evidence of the dependence of GQD luminescence on their redox state. We demonstrated that GQD PL intensity was enhanced upon reduction (quantum yield increased from 0.44 to 0.

View Article and Find Full Text PDF

The development of a new device based on the use of UV-vis bare optical fibers in a long optical path length configuration and the measurement of the Raman response in normal arrangement allows us to perform UV-vis and Raman spectroelectrochemistry simultaneously in a single experiment. To the best of our knowledge, this is the first time that a spectroelectrochemistry device is able to record both spectroscopic responses at the same time, which further expands the versatility of spectroelectrochemistry techniques and enables us to obtain much more high-quality information in a single experiment. Three different electrochemical systems, such as ferrocyanide, dopamine, and 3,4-ethylenedioxythiophene, have been studied to validate the cell and to demonstrate the performance of the device.

View Article and Find Full Text PDF