New technologies for monitoring biodiversity such as environmental (e)DNA, passive acoustic monitoring, and optical sensors promise to generate automated spatiotemporal community observations at unprecedented scales and resolutions. Here, we introduce 'novel community data' as an umbrella term for these data. We review the emerging field around novel community data, focusing on new ecological questions that could be addressed; the analytical tools available or needed to make best use of these data; and the potential implications of these developments for policy and conservation.
View Article and Find Full Text PDFUnmeasured or latent variables are often the cause of correlations between multivariate measurements, which are studied in a variety of fields such as psychology, ecology, and medicine. For Gaussian measurements, there are classical tools such as factor analysis or principal component analysis with a well-established theory and fast algorithms. Generalized Linear Latent Variable models (GLLVMs) generalize such factor models to non-Gaussian responses.
View Article and Find Full Text PDFIn regression modelling, measurement error models are often needed to correct for uncertainty arising from measurements of covariates/predictor variables. The literature on measurement error (or errors-in-variables) modelling is plentiful, however, general algorithms and software for maximum likelihood estimation of models with measurement error are not as readily available, in a form that they can be used by applied researchers without relatively advanced statistical expertise. In this study, we develop a novel algorithm for measurement error modelling, which could in principle take any regression model fitted by maximum likelihood, or penalised likelihood, and extend it to account for uncertainty in covariates.
View Article and Find Full Text PDFThe life span of leaves increases with their mass per unit area (LMA). It is unclear why. Here, we show that this empirical generalization (the foundation of the worldwide leaf economics spectrum) is a consequence of natural selection, maximizing average net carbon gain over the leaf life cycle.
View Article and Find Full Text PDFMultiple imputation and maximum likelihood estimation (via the expectation-maximization algorithm) are two well-known methods readily used for analyzing data with missing values. While these two methods are often considered as being distinct from one another, multiple imputation (when using improper imputation) is actually equivalent to a stochastic expectation-maximization approximation to the likelihood. In this article, we exploit this key result to show that familiar likelihood-based approaches to model selection, such as Akaike's information criterion (AIC) and the Bayesian information criterion (BIC), can be used to choose the imputation model that best fits the observed data.
View Article and Find Full Text PDFUrbanised estuaries, ports and harbours are often utilised for recreational purposes, notably recreational angling. Yet there has been little quantitative assessment of the footprint and intensity of these activities at scales suitable for spatial management. Urban and industrialised estuaries have previously been considered as having low conservation value, perhaps due to issues with contamination and disturbance.
View Article and Find Full Text PDFGeneralized linear latent variable models (GLLVM) are popular tools for modeling multivariate, correlated responses. Such data are often encountered, for instance, in ecological studies, where presence-absences, counts, or biomass of interacting species are collected from a set of sites. Until very recently, the main challenge in fitting GLLVMs has been the lack of computationally efficient estimation methods.
View Article and Find Full Text PDFGeneralized linear latent variable models (GLLVMs) offer a general framework for flexibly analyzing data involving multiple responses. When fitting such models, two of the major challenges are selecting the order, that is, the number of factors, and an appropriate structure for the loading matrix, typically a sparse structure. Motivated by the application of GLLVMs to study marine species assemblages in the Southern Ocean, we propose the Ordered Factor LASSO or OFAL penalty for order selection and achieving sparsity in GLLVMs.
View Article and Find Full Text PDFBootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)-common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form.
View Article and Find Full Text PDFWhile data transformation is a common strategy to satisfy linear modeling assumptions, a theoretical result is used to show that transformation cannot reasonably be expected to stabilize variances for small counts. Under broad assumptions, as counts get smaller, it is shown that the variance becomes proportional to the mean under monotonic transformations g(·) that satisfy g(0)=0, excepting a few pathological cases. A suggested rule-of-thumb is that if many predicted counts are less than one then data transformation cannot reasonably be expected to stabilize variances, even for a well-chosen transformation.
View Article and Find Full Text PDFTechnological advances have enabled a new class of multivariate models for ecology, with the potential now to specify a statistical model for abundances jointly across many taxa, to simultaneously explore interactions across taxa and the response of abundance to environmental variables. Joint models can be used for several purposes of interest to ecologists, including estimating patterns of residual correlation across taxa, ordination, multivariate inference about environmental effects and environment-by-trait interactions, accounting for missing predictors, and improving predictions in situations where one can leverage knowledge of some species to predict others. We demonstrate this by example and discuss recent computation tools and future directions.
View Article and Find Full Text PDFWe propose a new variable selection criterion designed for use with forward selection algorithms; the score information criterion (SIC). The proposed criterion is based on score statistics which incorporate correlated response data. The main advantage of the SIC is that it is much faster to compute than existing model selection criteria when the number of predictor variables added to a model is large, this is because SIC can be computed for all candidate models without actually fitting them.
View Article and Find Full Text PDFSpecies distribution models (SDMs) are an important tool for studying the patterns of species across environmental and geographic space. For community data, a common approach involves fitting an SDM to each species separately, although the large number of models makes interpretation difficult and fails to exploit any similarities between individual species responses. A recently proposed alternative that can potentially overcome these difficulties is species archetype models (SAMs), a model-based approach that clusters species based on their environmental response.
View Article and Find Full Text PDFPresence-only data, where information is available concerning species presence but not species absence, are subject to bias due to observers being more likely to visit and record sightings at some locations than others (hereafter "observer bias"). In this paper, we describe and evaluate a model-based approach to accounting for observer bias directly--by modelling presence locations as a function of known observer bias variables (such as accessibility variables) in addition to environmental variables, then conditioning on a common level of bias to make predictions of species occurrence free of such observer bias. We implement this idea using point process models with a LASSO penalty, a new presence-only method related to maximum entropy modelling, that implicitly addresses the "pseudo-absence problem" of where to locate pseudo-absences (and how many).
View Article and Find Full Text PDFWe provide the first global test of the idea that introduced species have greater seed dispersal distances than do native species, using data for 51 introduced and 360 native species from the global literature. Counter to our expectations, there was no significant difference in mean or maximum dispersal distance between introduced and native species. Next, we asked whether differences in dispersal distance might have been obscured by differences in seed mass, plant height and dispersal syndrome, all traits that affect dispersal distance and which can differ between native and introduced species.
View Article and Find Full Text PDFModeling the spatial distribution of a species is a fundamental problem in ecology. A number of modeling methods have been developed, an extremely popular one being MAXENT, a maximum entropy modeling approach. In this article, we show that MAXENT is equivalent to a Poisson regression model and hence is related to a Poisson point process model, differing only in the intercept term, which is scale-dependent in MAXENT.
View Article and Find Full Text PDFIn allometry, bivariate techniques related to principal component analysis are often used in place of linear regression, and primary interest is in making inferences about the slope. We demonstrate that the current inferential methods are not robust to bivariate contamination, and consider four robust alternatives to the current methods -- a novel sandwich estimator approach, using robust covariance matrices derived via an influence function approach, Huber's M-estimator and the fast-and-robust bootstrap. Simulations demonstrate that Huber's M-estimators are highly efficient and robust against bivariate contamination, and when combined with the fast-and-robust bootstrap, we can make accurate inferences even from small samples.
View Article and Find Full Text PDFThe arcsine square root transformation has long been standard procedure when analyzing proportional data in ecology, with applications in data sets containing binomial and non-binomial response variables. Here, we argue that the arcsine transform should not be used in either circumstance. For binomial data, logistic regression has greater interpretability and higher power than analyses of transformed data.
View Article and Find Full Text PDF• It has long been believed that plant species from the tropics have higher levels of traits associated with resistance to herbivores than do species from higher latitudes. A meta-analysis recently showed that the published literature does not support this theory. However, the idea has never been tested using data gathered with consistent methods from a wide range of latitudes.
View Article and Find Full Text PDFLeaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c.
View Article and Find Full Text PDFA modification of generalized estimating equations (GEEs) methodology is proposed for hypothesis testing of high-dimensional data, with particular interest in multivariate abundance data in ecology, an important application of interest in thousands of environmental science studies. Such data are typically counts characterized by high dimensionality (in the sense that cluster size exceeds number of clusters, n>K) and over-dispersion relative to the Poisson distribution. Usual GEE methods cannot be applied in this setting primarily because sandwich estimators become numerically unstable as n increases.
View Article and Find Full Text PDFIt was predicted that relationships of leaf mass per area (LMA) with juvenile shade tolerance will depend on leaf habit, and on whether species are compared at a common age as young seedlings, or at a common size as saplings. A meta-analysis of 47 comparative studies (372 species) was used to test predictions, and the effect of light environment on this relationship. The LMA of evergreens was positively correlated with shade tolerance, irrespective of ontogeny or light environment.
View Article and Find Full Text PDFIn allometry, researchers are commonly interested in estimating the slope of the major axis or standardized major axis (methods of bivariate line fitting related to principal components analysis). This study considers the robustness of two tests for a common slope amongst several axes. It is of particular interest to measure the robustness of these tests to slight violations of assumptions that may not be readily detected in sample datasets.
View Article and Find Full Text PDF