DNA-encoded small molecule library technology has recently emerged as a new paradigm for identifying ligands against drug targets. To date, it has been used to identify ligands against targets that are soluble or overexpressed on cell surfaces. Here, we report applying cell-based selection methods to profile surfaces of mouse C2C12 myoblasts and myotube cells in an unbiased, target agnostic manner.
View Article and Find Full Text PDFThe proteolysis targeting chimera (PROTAC) strategy results in the down-regulation of unwanted protein(s) for disease treatment. In the PROTAC process, a heterobifunctional degrader forms a ternary complex with a target protein of interest (POI) and an E3 ligase, which results in ubiquitination and proteasomal degradation of the POI. While ternary complex formation is a key attribute of PROTAC degraders, modification of the PROTAC molecule to optimize ternary complex formation and protein degradation can be a labor-intensive and tedious process.
View Article and Find Full Text PDFDNA-encoded library (DEL) technology utilizes affinity-based selection methods to screen chemical libraries. DEL technology possesses some unique features compared to other small molecule screening technologies, such as the use of DNA identification tags and use of target protein immobilization in the standard library screening process. Therefore, it is of great importance to ensure the target protein is properly designed for DEL selections, that the protein is of high quality, and that ligand binding sites are accessible under DEL selection conditions.
View Article and Find Full Text PDFDEL selections are designed to discover novel small molecule compounds attached to DNA that bind to a target protein. A known small molecule or peptide ligand that binds to the target protein can be conjugated to DNA to mimic compounds contained in DEL libraries. The conjugate can be used as a ligand in preselection binding assays to validate a target protein and optimize selection methods and serve as a positive control in selection experiments.
View Article and Find Full Text PDFInhibition of soluble epoxide hydrolase (sEH) has recently emerged as a new approach to treat cardiovascular disease and respiratory disease. Inhibitors based on 1,3,5-triazine chemotype were discovered through affinity selection against two triazine-based DNA-encoded libraries. The structure and activity relationship study led to the expansion of the original 1,4-cycloalkyl series to related aniline, piperidine, quinoline, aryl-ether and benzylic series.
View Article and Find Full Text PDFDNA-encoded libraries (DELs) can contain billions of unique chemical species; selecting against such large inputs, it is typical to find more candidate binders than is reasonable to pursue for follow-up synthesis and testing. Given this wealth of choices, common practice is to limit synthesis to only those compounds estimated to have the greatest chance of being high-affinity binders; of the many potential factors contributing to this estimation, the strength of the selection signal of a candidate binder is always important. We define here methods and equations which relate the theoretical selection signal of a compound to its affinity and chemical yield.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2020
DEL selections are binding assays conducted with mixtures of chemically diverse DNA-tagged ligands and a screening target. DEL selections use DNA sequence counts to measure target binding, where ideally higher affinity ligands will have higher counts than weaker affinity ligands. However, there is not always a clear relationship between DNA sequence count (assay signal) and binding affinity.
View Article and Find Full Text PDFCell-to-cell communication is essential for the organization, coordination, and development of cellular networks and multi-cellular systems. Intercellular communication is mediated by soluble factors (including growth factors, neurotransmitters, and cytokines/chemokines), gap junctions, exosomes and recently described tunneling nanotubes (TNTs). It is unknown whether a combination of these communication mechanisms such as TNTs and gap junctions may be important, but further research is required.
View Article and Find Full Text PDFDNA-encoded chemical library technology was developed with the vision of its becoming a transformational platform for drug discovery. The hope was that a new paradigm for the discovery of low-molecular-weight drugs would be enabled by combining the vast molecular diversity achievable with combinatorial chemistry, the information-encoding attributes of DNA, the power of molecular biology, and a streamlined selection-based discovery process. Here, we describe the discovery and early clinical development of GSK2256294, an inhibitor of soluble epoxide hydrolase (sEH, EPHX2), by using encoded-library technology (ELT).
View Article and Find Full Text PDFDNA-encoded small-molecule library technology has recently emerged as a new paradigm for identifying ligands against drug targets. To date, this technology has been used with soluble protein targets that are produced and used in a purified state. Here, we describe a cell-based method for identifying small-molecule ligands from DNA-encoded libraries against integral membrane protein targets.
View Article and Find Full Text PDFThe aggrecan degrading metalloprotease ADAMTS-4 has been identified as a novel therapeutic target for osteoarthritis. Here, we use DNA-encoded Library Technology (ELT) to identify novel ADAMTS-4 inhibitors from a DNA-encoded triazine library by affinity selection. Structure-activity relationship studies based on the selection information led to the identification of potent and highly selective inhibitors.
View Article and Find Full Text PDFThe inhibition of protein-protein interactions remains a challenge for traditional small molecule drug discovery. Here we describe the use of DNA-encoded library technology for the discovery of small molecules that are potent inhibitors of the interaction between lymphocyte function-associated antigen 1 and its ligand intercellular adhesion molecule 1. A DNA-encoded library with a potential complexity of 4.
View Article and Find Full Text PDF1-(1,3,5-Triazin-yl)piperidine-4-carboxamide inhibitors of soluble epoxide hydrolase were identified from high through-put screening using encoded library technology. The triazine heterocycle proved to be a critical functional group, essential for high potency and P450 selectivity. Phenyl group substitution was important for reducing clearance, and establishing good oral exposure.
View Article and Find Full Text PDFProstaglandins Other Lipid Mediat
January 2014
Soluble epoxide hydrolase (sEH, EPHX2) metabolizes eicosanoid epoxides, including epoxyeicosatrienoic acids (EETs) to the corresponding dihydroxyeicosatrienoic acids (DHETs), and leukotoxin (LTX) to leukotoxin diol (LTX diol). EETs, endothelium-derived hyperpolarizing factors, exhibit potentially beneficial properties, including anti-inflammatory effects and vasodilation. A novel, potent, selective inhibitor of recombinant human, rat and mouse sEH, GSK2256294A, exhibited potent cell-based activity, a concentration-dependent inhibition of the conversion of 14,15-EET to 14,15-DHET in human, rat and mouse whole blood in vitro, and a dose-dependent increase in the LTX/LTX diol ratio in rat plasma following oral administration.
View Article and Find Full Text PDFBiochemical combinatorial techniques such as phage display, RNA display and oligonucleotide aptamers have proven to be reliable methods for generation of ligands to protein targets. Adapting these techniques to small synthetic molecules has been a long-sought goal. We report the synthesis and interrogation of an 800-million-member DNA-encoded library in which small molecules are covalently attached to an encoding oligonucleotide.
View Article and Find Full Text PDFFusion proteins containing immunoglobulin Fc domains attached to bioactive moieties have been developed as therapeutic agents against several diseases. Here, we describe the development and characteristics of a novel fusion protein (FLSC R/T-IgG1) that targets CCR5, the major coreceptor for HIV-1 during primary infection. FLSC R/T-IgG1 was expressed from a synthetic gene that linked a single chain gp120-CD4 complex containing an R5 gp120 sequence with the hinge-CH2-CH3 portion of human immunoglobulin gamma subtype 1.
View Article and Find Full Text PDFAlzheimer's disease is characterized by deposition of beta-amyloid peptide (Abeta) into plaques in the brain, leading to neuronal toxicity and dementia. Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system can also cause a dementia, and amyloid deposition in the central nervous system is significantly higher in HIV-1-infected individuals compared with uninfected controls. Here we report that Abeta fibrils stimulated, by 5-20-fold, infection of target cells expressing CD4 and an appropriate coreceptor by multiple HIV-1 isolates but did not permit infection of cells lacking these receptors.
View Article and Find Full Text PDF