During navigation, landmark processing is critical either for generating an allocentric-based cognitive map or in facilitating egocentric-based strategies. Increasing evidence from manipulation and single-unit recording studies has highlighted the role of the entorhinal cortex in processing landmarks. In particular, the lateral (LEC) and medial (MEC) sub-regions of the entorhinal cortex have been shown to attend to proximal and distal landmarks, respectively.
View Article and Find Full Text PDFCholinergic neurons within the pedunculopontine tegmental nucleus have been implicated in a range of functions, including behavioral state control, attention, and modulation of midbrain and basal ganglia systems. Previous experiments with excitotoxic lesions have found persistent learning impairment and altered response to nicotine following lesion of the posterior component of the PPTg (pPPTg). These effects have been attributed to disrupted input to midbrain dopamine systems, particularly the ventral tegmental area.
View Article and Find Full Text PDFThe lateral entorhinal cortex (LEC) provides one of the two major input pathways to the hippocampus and has been suggested to process the nonspatial contextual details of episodic memory. Combined with spatial information from the medial entorhinal cortex it is hypothesised that this contextual information is used to form an integrated spatially selective, context-specific response in the hippocampus that underlies episodic memory. Recently, we reported that the LEC is required for recognition of objects that have been experienced in a specific context (Wilson et al.
View Article and Find Full Text PDFThe pedunculopontine tegmental nucleus (PPTg) is in a pivotal position between the basal ganglia and brainstem: it is able to influence and regulate all levels of basal ganglia and corticostriatal activity as well as being a key component of brainstem reticular and motor control circuitry. Consistent with its anatomical position, the PPTg has previously been shown to process rapid, salient sensory input, is a target for Parkinson's disease treatments and has been implicated in associative learning. We explicitly investigated the role of the posterior pPPTg (pPPTg) in action-outcome processes, where actions are performed with the goal-directed aim of obtaining an anticipated outcome.
View Article and Find Full Text PDFEpisodic memory incorporates information about specific events or occasions including spatial locations and the contextual features of the environment in which the event took place. It has been modeled in rats using spontaneous exploration of novel configurations of objects, their locations, and the contexts in which they are presented. While we have a detailed understanding of how spatial location is processed in the brain relatively little is known about where the nonspatial contextual components of episodic memory are processed.
View Article and Find Full Text PDFThe pedunculopontine tegmental nucleus (PPTg) is in a key position to participate in operant reinforcement via its connections with the corticostriatal architecture and the medial reticular formation. Indeed, previous work has demonstrated that rats bearing lesions of the whole PPTg are impaired when learning to make two bar presses for amphetamine reinforcement. Anterior and posterior portions of the PPTg make different anatomical connections, including preferential projections by the anterior PPTg to substantia nigra pars compacta dopamine neurons and by the posterior PPTg to ventral tegmental area dopamine neurons.
View Article and Find Full Text PDFMidbrain dopamine neurons are phasically activated by a variety of sensory stimuli. It has been hypothesized that these activations contribute to reward prediction or behavioural switching. To test the latter hypothesis we recorded from 131 single neurons in the ventral tegmental area and retrorubral field of thirsty rats responding during a modified go/no-go task.
View Article and Find Full Text PDFIt has been suggested that reward "wanting" and "liking" are mediated by separable brain systems. To facilitate neuropharmacological and neurophysiological research on this issue we developed a behavioral task with putative measures of reward "wanting" and "liking" available on a trial-by-trial basis. We were able to test whether our measures were sensitive to changes in thirsty rats' "wanting" and "liking" of liquid reward by manipulating its delay, taste and volume.
View Article and Find Full Text PDFIt has been proposed that nucleus accumbens neurons respond to outcome (reward and punishment) and outcome-predictive information. Alternatively, it has been suggested that these neurons respond to salient stimuli, regardless of their outcome-predictive properties, to facilitate a switch in ongoing behavior. We recorded the activity of 82 single-nucleus accumbens neurons in thirsty rats responding within a modified go/no-go task.
View Article and Find Full Text PDFThe nucleus accumbens has been associated with processing information related to primary reinforcement and reward. Most neurophysiological studies report that nucleus accumbens neurons are phasically excited in response to the onsets of salient events during the seeking of reinforcement and to the delivery of primary reinforcers. However, a minority of studies report inhibition during primary reinforcement.
View Article and Find Full Text PDFPsychopharmacology (Berl)
July 2004
Rationale: Second-order schedules of reinforcement have been used extensively to model reward-seeking and drug-seeking behaviour. Second-order stimuli within second-order schedules have been shown to enhance response rates during operant responding for natural reinforcers and drug reinforcers. This has led some to view second-order schedules of drug reinforcement as a model maintained of drug-seeking in addicts by drug-associated stimuli.
View Article and Find Full Text PDF