Topological materials confined in 1D can transform computing technologies, such as 1D topological semimetals for nanoscale interconnects and 1D topological superconductors for fault-tolerant quantum computing. As such, understanding crystallization of 1D-confined topological materials is critical. Here, we demonstrate 1D template-assisted nanowire synthesis where we observe diameter-dependent phase selectivity for tungsten phosphides.
View Article and Find Full Text PDFThe layer stacking order in 2D materials strongly affects functional properties and holds promise for next-generation electronic devices. In bulk, octahedral MoTe possesses two stacking arrangements, the ferroelectric Weyl semimetal T phase and the higher-order topological insulator 1T' phase. However, in thin flakes of MoTe, it is unclear if the layer stacking follows the T, 1T', or an alternative stacking sequence.
View Article and Find Full Text PDFMater Today Bio
April 2023
The combination of and chorioallantoic membrane (CAM) assay provides an excellent platform which extends its relevance in studying carcinogenesis to the field of screening of anticancer activity of platinum nanoparticles (PtNPs) and further study of the amino acids' fluctuations in liver and brain. PtNPs are promising candidates for replacing cisplatin (CDDP); however, insufficient data of their antitumor efficiency and activity on the cancer-related amino acid metabolism are available, and the assessment of the performance has barely scratched the surface. Herein, we used CAM assay as model for screening of novel therapeutic modalities, and we conducted a comparative study of the effects of CDDP and polyvinylpyrrolidone coated PtNPs on MDA-MB-231 breast cancer xenograft.
View Article and Find Full Text PDFThe increasing resistance of copper (Cu) interconnects for decreasing dimensions is a major challenge in continued downscaling of integrated circuits beyond the 7 nm technology node as it leads to unacceptable signal delays and power consumption in computing. The resistivity of Cu increases due to electron scattering at surfaces and grain boundaries at the nanoscale. Topological semimetals, owing to their topologically protected surface states and suppressed electron backscattering, are promising candidates to potentially replace current Cu interconnects.
View Article and Find Full Text PDFThe surface functionalization of two-dimensional (2D) materials with organic electron donors (OEDs) is a powerful tool to modulate the electronic properties of the material. Here we report a novel molecular dopant, Me-OED, that demonstrates record-breaking molecular doping to MoS, achieving a carrier density of 1.10 ± 0.
View Article and Find Full Text PDFNanograined metal oxides are requisite for diverse applications that use large surface area, such as gas sensors and catalysts. However, nanoscale grains are thermodynamically unstable and tend to coarsen at elevated temperatures. Here, we report effective grain growth suppression in metal oxide nanoribbons annealed at high temperature (900°C) by tuning the metal-to-oxygen ratio and confining the nanoribbons.
View Article and Find Full Text PDFProteins are generally detected as biomarkers for tracing or determining various disorders in organisms. Biomarker proteins can be tracked in samples with various origins and in different concentrations, revealing whether an organism is in a healthy or unhealthy state. In regard to detection, electrochemical biosensors are a potential fusion of electronics, chemistry, and biology, allowing for fast and early point-of-care detection from a biological sample with the advantages of high sensitivity, simple construction, and easy operation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2021
The intercalation-induced phase transition of MoS from the semiconducting 2H to the semimetallic 1T' phase has been studied in detail for nearly a decade; however, the effects of a heterointerface between MoS and other two-dimensional (2D) crystals on the phase transition have largely been overlooked. Here, calculations show that intercalating Li at a MoS-hexagonal boron nitride (BN) interface stabilizes the 1T phase over the 2H phase of MoS by ∼100 mJ m , suggesting that encapsulating MoS with BN may lower the electrochemical energy needed for the intercalation-induced phase transition. However, Raman spectroscopy of BN-MoS-BN heterostructures during the electrochemical intercalation of Li shows that the phase transition occurs at the same applied voltage for the heterostructure as for bare MoS.
View Article and Find Full Text PDFOwing to the small energy differences between its polymorphs, MoTe can access a full spectrum of electronic states from the 2H semiconducting state to the 1T' semimetallic state and from the T Weyl semimetallic state to the superconducting state in the 1T' and T phase at low temperature. Thus, it is a model system for phase transformation studies as well as quantum phenomena such as the quantum spin Hall effect and topological superconductivity. Careful studies of MoTe and its potential applications require large-area MoTe thin films with high crystallinity and thickness control.
View Article and Find Full Text PDFInorganic nanoparticles might have played a vital role in the transition from inorganic chemistry to self-sustaining living systems. Such transition may have been triggered or controlled by processes requiring not only versatile catalysts but also suitable reaction surfaces. Here, experimental results showing that multicolor quantum dots might have been able to participate as catalysts in several specific and nonspecific reactions, relevant to the prebiotic chemistry are demonstrated.
View Article and Find Full Text PDFBackground: Currently, the diagnosis and treatment of neuroblastomas-the most frequent solid tumors in children-exploit the norepinephrine transporter (hNET) via radiolabeled norepinephrine analogs. We aim to develop a nanomedicine-based strategy towards precision therapy by targeting hNET cell-surface protein with hNET-derived homing peptides.
Results: The peptides (seq.
Nanoparticular form of titanium dioxide (TiO NPs) belongs to important industrial material. Despite being widely used, serious contradictions regarding biosafety of TiO NPs remain. We anticipate that such discrepancies could be due to a lack of understanding of a linkage between TiO NPs phase composition and cytotoxicity.
View Article and Find Full Text PDFTungsten ditelluride (WTe) has many interesting properties such as its extremely large nonsaturating magnetoresistance and quantum spin Hall state in the monolayer limit. The anisotropic crystal structure of WTe can allow for isolation of particular crystal directions to study the predicted Weyl states or crystal-symmetry-dependent magnetoresistance when studied at limited dimensions. In particular, the recent demonstration of superconductivity in WTe monolayer suggests that realizing nanowire geometry for WTe may be important to investigate potential Majorana zero modes predicted in one-dimensional topological superconductors.
View Article and Find Full Text PDFUsing the MoS -WTe heterostructure as a model system combined with electrochemical microreactors and density function theory calculations, it is shown that heterostructured contacts enhance the hydrogen evolution reaction (HER) activity of monolayer MoS . Two possible mechanisms are suggested to explain this enhancement: efficient charge injection through large-area heterojunctions between MoS and WTe and effective screening of mirror charges due to the semimetallic nature of WTe . The dielectric screening effect is proven minor, probed by measuring the HER activity of monolayer MoS on various support substrates with dielectric constants ranging from 4 to 300.
View Article and Find Full Text PDFThe removal of selenium from superficial and waste water is a worldwide problem. The maximum limit according to the World Health Organization (WHO) for the selenium in the water is set at a concentration of 10 μg/L. Carbon based adsorbents have attracted much attention and recently demonstrated promising performance in removal of selenium.
View Article and Find Full Text PDFBackground: Development of new nanomaterials that inhibit or kill bacteria is an important and timely research topic. For example, financial losses due to infectious diseases, such as diarrhea, are a major concern in livestock productions around the world. Antimicrobial nanoparticles (NPs) represent a promising alternative to antibiotics and may lower antibiotic use and consequently spread of antibiotic resistance traits among bacteria, including pathogens.
View Article and Find Full Text PDFMetal-based coordination compounds, including the well-known cytostatic drug cisplatin, are widely used in the anticancer therapy. Generally, they exhibit high cytotoxicity not only towards malignant cells, but also towards non-malignant cells, which represents main problem of their clinical use. Herein, we describe the synthesis, characterization and biological testing of three trinuclear nickel(II) coordination compounds.
View Article and Find Full Text PDFPalladium and silver nanoparticles (NPs) anchored at the outer surface of ferritin form stable suspension of non-coated particles that possess several catalytic and enzymomimetic activities. These activities are strongly affected by detergents that significantly influence the reaction efficiency and specificity. Reductive dehalogenation of various azo dye substrates shows strong differences in reactivity for each substrate-detergent pair.
View Article and Find Full Text PDFDespite the importance of cell membranes for maintenance of integrity of cellular structures, there is still a lack of methods that allow simple real-time visualization of their damage. Herein, we describe gadolinium-Schiff base-doped quantum dots (GdQDs)-based probes for a fast facile spatial labeling of membrane injuries. We found that GdQDs preferentially interact through electron-rich and hydrophobic residues with a specific sequence motif of NHE-RF2 scaffold protein, exposed upon membrane damage.
View Article and Find Full Text PDFUpconversion nanoparticles (UCNPs) are an emerging class of optical materials with high potential in bioimaging due to practically no background signal and high penetration depth. Their excellent optical properties and easy surface functionalization make them perfect for conjugation with targeting ligands. In this work, capillary electrophoretic (CE) method with laser-induced fluorescence detection was used to investigate the behavior of carboxyl-silica-coated UCNPs.
View Article and Find Full Text PDF