Publications by authors named "David Hyndman"

There has been an increase in tile drained area across the US Midwest and other regions worldwide due to agricultural expansion, intensification, and climate variability. Despite this growth, spatially explicit tile drainage maps remain scarce, which limits the accuracy of hydrologic modeling and implementation of nutrient reduction strategies. Here, we developed a machine-learning model to provide a Spatially Explicit Estimate of Tile Drainage (SEETileDrain) across the US Midwest in 2017 at a 30-m resolution.

View Article and Find Full Text PDF

Nitrogen and phosphorus pollution is of great concern to aquatic life and human well-being. While most of these nutrients are applied to the landscape, little is known about the complex interplay among nutrient applications, transport attenuation processes, and coastal loads. Here, we enhance and apply the Spatially Explicit Nutrient Source Estimate and Flux model (SENSEflux) to simulate the total annual nitrogen and phosphorus loads from the US Great Lakes Basin to the coastline, identify nutrient delivery hotspots, and estimate the relative contributions of different sources and pathways at a high resolution (120 m).

View Article and Find Full Text PDF

Accidental ingestion of fish bones can potentially lead to serious complications like perforation of the alimentary tract and the formation of abscesses in adjacent organs. Prompt and accurate diagnosis of the etiology of hepatic abscesses is critical to prevent clinical deterioration and poor outcomes. Notably, fish bones can be subtle in imaging studies and erroneously interpreted as calcifications, vessels, or artifacts potentially delaying diagnosis and management.

View Article and Find Full Text PDF

Despite the widely acknowledged public health impacts of surface water fecal contamination, there is limited understanding of seasonal effects on (i) fate and transport processes and (ii) the mechanisms by which they contribute to water quality impairment. Quantifying relationships between land use, chemical parameters, and fecal bacterial concentrations in watersheds can help guide the monitoring and control of microbial water quality and explain seasonal differences. The goals of this study were to (i) identify seasonal differences in Escherichia coli and Bacteroides thetaiotaomicron concentrations, (ii) evaluate environmental drivers influencing microbial contamination during baseflow, snowmelt, and summer rain seasons, and (iii) relate seasonal changes in B.

View Article and Find Full Text PDF

As non-point sources of pollution begin to overtake point sources in watersheds, source identification and complicating variables such as rainfall are growing in importance. Microbial source tracking (MST) allows for identification of fecal contamination sources in watersheds; when combined with data on land use and co-occuring variables (e.g.

View Article and Find Full Text PDF

Understanding agriculturally co-located solar photovoltaic (PV) installation capacity, practices, and preferences is imperative to foster a future where solar power and agriculture co-exist with limited impacts on food production. Crops and PV panels are often co-located as they have similar ideal conditions for maximum yield. The recent boom in solar photovoltaics is displacing a significant amount of cropland.

View Article and Find Full Text PDF

Climate change is increasing winter temperatures across the planet, altering snowmelt hydrology. This study addresses a gap in snow research in non-alpine areas by examining changes to snow and winter and spring streamflow across most of the eastern US using daily observations from weather stations and stream gages from water years 1960-2019. These daily data were aggregated across drainage basins and classified winters with similar temperatures; differences between winters and both seasonal and annual trends were statistically quantified.

View Article and Find Full Text PDF

Novel low-pressure irrigation technologies have been widely adopted by farmers, allowing both reduced water and energy use. However, little is known about how the transition from legacy technologies affected water and energy use at the aquifer scale. Here, we examine the widespread adoption of low-energy precision application (LEPA) and related technologies across the Kansas High Plains Aquifer.

View Article and Find Full Text PDF

Increasing riverine phosphorus (P) levels in headwaters due to expanded and intensified human activities are worldwide concerns, because P is a well-known limiting nutrient for freshwater eutrophication. Here we adopt the conceptual framework of the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model to describe total phosphorus (TP) sources and transport in a headwater watershed undergoing rapid agricultural expansion in the upper Taihu Lake Basin, China. Our models, which include variables for land cover, river length, runoff depth, and pond density, explain 94% of the spatio-temporal variability in TP loads.

View Article and Find Full Text PDF

The existence of lowland ponds alter watershed nitrogen (N) cycles via combined changes in runoff and N processing potential, which can significantly buffer watershed N transport. Here, we adopt the conceptual framework of the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model to describe N transport and explore the buffering roles of lowland ponds in a small headwater watershed of Taihu Lake Basin, China. Our model, which included variables for nutrient sources, riverine length, precipitation and pond density, explained 95% of the spatio-temporal variability in total N loads.

View Article and Find Full Text PDF

Hydropower has been the leading source of renewable energy across the world, accounting for up to 71% of this supply as of 2016. This capacity was built up in North America and Europe between 1920 and 1970 when thousands of dams were built. Big dams stopped being built in developed nations, because the best sites for dams were already developed and environmental and social concerns made the costs unacceptable.

View Article and Find Full Text PDF

The effects of manure application in agriculture on surface water quality has become a local to global problem because of the adverse consequences on public health and food security. This study evaluated (i) the spatial distribution of bovine (cow) and porcine (pig) genetic fecal markers, (ii) how hydrologic factors influenced these genetic markers, and (iii) their variations as a function of land use, nutrients, and other physiochemical factors. We collected 189 samples from 63 watersheds in Michigan's Lower Peninsula during baseflow, spring melt, and summer rain conditions.

View Article and Find Full Text PDF

Urbanization onto adjacent farmlands directly reduces the agricultural area available to meet the resource needs of a growing society. Soil conservation is a common objective in urban planning, but little focus has been placed on targeting soil value as a metric for conservation. This study assigns commodity and water storage values to the agricultural soils across all of the watersheds in Michigan's Lower Peninsula to evaluate how cities might respond to a soil conservation-based urbanization strategy.

View Article and Find Full Text PDF

Numerous studies have linked land use/land cover (LULC) to aquatic ecosystem responses, however only a few have included the dynamics of changing LULC in their analysis. In this study, we explicitly recognize changing LULC by linking mechanistic groundwater flow and travel time models to a historical time series of LULC, creating a land-use legacy map. We then illustrate the utility of legacy maps to explore relationships between dynamic LULC and lake water chemistry.

View Article and Find Full Text PDF

Background: Excess body burden of uric acid promotes gout. Diminished renal clearance of uric acid causes hyperuricemia in most patients with gout, and the renal urate transporter (URAT)1 is important for regulation of serum uric acid (sUA) levels. The URAT1 inhibitors probenecid and benzbromarone are used as gout therapies; however, their use is limited by drug-drug interactions and off-target toxicity, respectively.

View Article and Find Full Text PDF

In modern agriculture, the interplay between complex physical, agricultural, and socioeconomic water use drivers must be fully understood to successfully manage water supplies on extended timescales. This is particularly evident across large portions of the High Plains Aquifer where groundwater levels have declined at unsustainable rates despite improvements in both the efficiency of water use and water productivity in agricultural practices. Improved technology and land use practices have not mitigated groundwater level declines, thus water management strategies must adapt accordingly or risk further resource loss.

View Article and Find Full Text PDF

Elevated serum urate concentration is the primary cause of gout. Understanding the processes that affect serum urate concentration is important for understanding the etiology of gout and thereby understanding treatment. Urate handing in the human body is a complex system including three major processes: production, renal elimination, and intestinal elimination.

View Article and Find Full Text PDF

Linking fecal indicator bacteria concentrations in large mixed-use watersheds back to diffuse human sources, such as septic systems, has met limited success. In this study, 64 rivers that drain 84% of Michigan's Lower Peninsula were sampled under baseflow conditions for Escherichia coli, Bacteroides thetaiotaomicron (a human source-tracking marker), landscape characteristics, and geochemical and hydrologic variables. E.

View Article and Find Full Text PDF

Estimates of climate change impacts on global food production are generally based on statistical or process-based models. Process-based models can provide robust predictions of agricultural yield responses to changing climate and management. However, applications of these models often suffer from bias due to the common practice of re-initializing soil conditions to the same state for each year of the forecast period.

View Article and Find Full Text PDF

A large imbalance between recharge and water withdrawal has caused vital regions of the High Plains Aquifer (HPA) to experience significant declines in storage. A new predevelopment map coupled with a synthesis of annual water levels demonstrates that aquifer storage has declined by approximately 410 km(3) since the 1930s, a 15% larger decline than previous estimates. If current rates of decline continue, much of the Southern High Plains and parts of the Central High Plains will have insufficient water for irrigation within the next 20 to 30 years, whereas most of the Northern High Plains will experience little change in storage.

View Article and Find Full Text PDF

Hydraulic conductivity () fields are used to parameterize groundwater flow and transport models. Numerical simulations require a detailed representation of the field, synthesized to interpolate between available data. Several recent studies introduced high resolution data (HRK) at the Macro Dispersion Experiment (MADE) site, and used ground-penetrating radar (GPR) to delineate the main structural features of the aquifer.

View Article and Find Full Text PDF

It is widely recognized that groundwater flow and solute transport in natural media are largely controlled by heterogeneities. In the last three decades, many studies have examined the effects of heterogeneous hydraulic conductivity fields on flow and transport processes, but there has been much less attention to the influence of heterogeneous porosity fields. In this study, we use porosity and particle size measurements from boreholes at the Boise Hydrogeophysical Research Site (BHRS) to evaluate the importance of characterizing the spatial structure of porosity and grain size data for solute transport modeling.

View Article and Find Full Text PDF

The perinuclear theca (PT) of mammalian sperm is a unique subcellular structure encapsulating the nucleus. Compositionally, the PT is made up of at least six prominent polypeptides (60, 36, 31, 28, 24, and 15 kDa), of which only two have been sequence identified, as well as many less prominent ones. As an ongoing process in unveiling the protein composition of the PT, we have uncovered the sequence identity of the prominent 24-kDa polypeptide (PT24).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session95p8sgtfld3nitnitudld99uu3e3k7bk): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once