Publications by authors named "David Huen"

Brain metastases comprise 40% of all metastatic tumours and breast tumours are among the tumours that most commonly metastasise to the brain, the role that epigenetic gene dysregulation plays in this process is not well understood. We carried out 450 K methylation array analysis to investigate epigenetically dysregulated genes in breast to brain metastases (BBM) compared to normal breast tissues (BN) and primary breast tumours (BP). For this, we referenced 450 K methylation data for BBM tumours prepared in our laboratory with BN and BP from The Cancer Genome Atlas.

View Article and Find Full Text PDF

There is a need to accelerate paediatric formulation evaluation and enhance quality of early stage data in drug development to alleviate the information pinch point present between formulation development and clinical evaluation. This present work reports application of DNA microarrays as a high throughput screening tool identifying markers for prediction of bioavailability and formulation driven physiological responses. With a focus on enhancing paediatric medicine provision, an oral liquid spironolactone suspension was formulated addressing a paediatric target product profile.

View Article and Find Full Text PDF

Adamantinoma and osteofibrous dysplasia (OFD)-like adamantinoma are rare primary bone tumors that are predominantly confined to the tibia. These 2 entities show similarities in location, histology, and radiologic appearance; however, adamantinoma is malignant and therefore differentiating between these bone tumors is essential for optimal patient care. To elucidate their genomic and transcriptomic alteration profiles and expand their etiological mechanisms, whole exome sequencing (WES) and RNA sequencing (RNA-Seq) were conducted on adamantinoma and OFD-like adamantinoma tumors.

View Article and Find Full Text PDF

Undifferentiated pleomorphic sarcoma of bone (UPSb) is a rare primary bone sarcoma that lacks a specific line of differentiation. There is very little information about the genetic alterations leading to tumourigenesis or malignant transformation. Distinguishing between UPSb and other malignant bone sarcomas, including dedifferentiated chondrosarcoma and osteosarcoma, can be challenging due to overlapping features.

View Article and Find Full Text PDF

The ability to develop a comprehensive panel of treatment predicting factors would significantly improve our ability to stratify patients for cytotoxic or targeted therapies, and prevent patients receiving ineffective treatments. We have investigated if a recently developed genome-wide haploid genetic screen can be used to reveal the critical mediators of response to anticancer therapy. Pancreatic cancer is known to be highly resistant to systemic therapy.

View Article and Find Full Text PDF

Background: Tumour metastasis to the brain is a common and deadly development in certain cancers; 18-30 % of breast tumours metastasise to the brain. The contribution that gene silencing through epigenetic mechanisms plays in these metastatic tumours is not well understood.

Results: We have carried out a bioinformatic screen of genome-wide breast tumour methylation data available at The Cancer Genome Atlas (TCGA) and a broad literature review to identify candidate genes that may contribute to breast to brain metastasis (BBM).

View Article and Find Full Text PDF

Ramipril is used mainly for the treatment of hypertension and to reduce incidence of fatality following heart attacks in patients who develop indications of congestive heart failure. In the paediatric population, it is used most commonly for the treatment of heart failure, hypertension in type 1 diabetes and diabetic nephropathy. Due to the lack of a suitable liquid formulation, the current study evaluates the development of a range of oral liquid formulations of ramipril along with their in vitro and in vivo absorption studies.

View Article and Find Full Text PDF

Selfish genes are DNA elements that increase their rate of genetic transmission at the expense of other genes in the genome and can therefore quickly spread within a population. It has been suggested that selfish elements could be exploited to modify the genome of entire populations for medical and ecological applications. Here we report that transcription activator-like effector nuclease (TALEN) and zinc finger nuclease (ZFN) can be engineered into site-specific synthetic selfish elements (SSEs) and demonstrate their transmission of up to 70% in the Drosophila germline.

View Article and Find Full Text PDF

The homing endonuclease gene (HEG) drive system, a promising genetic approach for controlling arthropod populations, utilises engineered nucleases to spread deleterious mutations that inactivate individual genes throughout a target population. Previous work with a naturally occurring LAGLIDADG homing endonuclease (I-SceI) demonstrated its feasibility in both Drosophila and Anopheles. Here we report on the next stage of this strategy: the redesign of HEGs with customized specificity in order to drive HEG-induced 'homing' in vivo via break-induced homologous recombination.

View Article and Find Full Text PDF

Homing endonuclease gene (HEG) drive is a promising insect population control technique that employs meganucleases to impair the fitness of pest populations. Our previous studies showed that HEG drive was more difficult to achieve in Drosophila melanogaster than Anopheles gambiae and we therefore investigated ways of improving homing performance in Drosophila. We show that homing in Drosophila responds to increased expression of HEGs specifically during the spermatogonia stage and this could be achieved through improved construct design.

View Article and Find Full Text PDF

Insects play a major role as vectors of human disease as well as causing significant agricultural losses. Harnessing the activity of customized homing endonuclease genes (HEGs) has been proposed as a method for spreading deleterious mutations through populations with a view to controlling disease vectors. Here, we demonstrate the feasibility of this method in Drosophila melanogaster, utilizing the well-characterized HEG, I-SceI.

View Article and Find Full Text PDF

Background: In eukaryotes, most DNA-binding proteins exert their action as members of large effector complexes. The presence of these complexes are revealed in high-throughput genome-wide assays by the co-occurrence of the binding sites of different complex components. Resampling tests are one route by which the statistical significance of apparent co-occurrence can be assessed.

View Article and Find Full Text PDF

The frizzled signaling/signal transduction pathway controls planar cell polarity (PCP) in both vertebrates and invertebrates. Epistasis experiments argue that in the Drosophila epidermis multiple wing hairs (mwh) acts as a downstream component of the pathway. The PCP proteins accumulate asymmetrically in pupal wing cells where they are thought to form distinct protein complexes.

View Article and Find Full Text PDF

We have used a chromatin immunoprecipitation-microarray (ChIP-array) approach to investigate the in vivo targets of heat-shock factor (Hsf) in Drosophila embryos. We show that this method identifies Hsf target sites with high fidelity and resolution. Using cDNA arrays in a genomic search for Hsf targets, we identified 141 genes with highly significant ChIP enrichment.

View Article and Find Full Text PDF

We describe a collection of P-element insertions that have considerable utility for generating custom chromosomal aberrations in Drosophila melanogaster. We have mobilized a pair of engineered P elements, p[RS3] and p[RS5], to collect 3243 lines unambiguously mapped to the Drosophila genome sequence. The collection contains, on average, an element every 35 kb.

View Article and Find Full Text PDF