Purpose: Validation of dosimetry software, such as Monte Carlo (MC) radiation transport codes used for patient-specific absorbed dose estimation, is critical prior to their use in clinical decision making. However, direct experimental validation in the clinic is generally not performed for low/medium-energy beta emitters used in radiopharmaceutical therapy (RPT) due to the challenges of measuring energy deposited by short-range particles. Our objective was to design a practical phantom geometry for radiochromic film (RF)-based absorbed dose measurements of beta-emitting radionuclides and perform experiments to directly validate our in-house developed Dose Planning Method (DPM) MC code dedicated to internal dosimetry.
View Article and Find Full Text PDFBackground: Although N13-ammonia has favorable properties among FDA approved radiotracers, complexity of implementation has limited its use. We describe the initial patient experience of N13-ammonia PET imaging using a compact N13-ammonia production system.
Methods: N13 was produced using the ION-12SC, a 12MeV, 10uA superconducting minimally shielded cyclotron, and reduced to N13-ammonia in an automated multi-use purification unit.
Purpose: To determine the financial implications of switching technetium (Tc)-99m mercaptoacetyltriglycine (MAG-3) to Tc-99m diethylene triamine penta-acetic acid (DTPA) at certain renal function thresholds before renal scintigraphy.
Methods: Institutional review board approval was obtained, and informed consent was waived for this HIPAA-compliant, retrospective, cohort study. Consecutive adult subjects (27 inpatients; 124 outpatients) who underwent MAG-3 renal scintigraphy, in the period from July 1, 2012 to June 30, 2013, were stratified retrospectively by hypothetical serum creatinine and estimated glomerular filtration rate (eGFR) thresholds, based on pre-procedure renal function.
J Clin Endocrinol Metab
November 2013
Context: Oral activity on radioiodine scintigraphy is commonly seen and may cause diagnostic dilemma. Determining the precise mechanism of oral uptake on radioiodine scintigraphy will increase the accuracy and confidence of interpretation and avoid possible misinterpretation.
Objective: To determine the etiology of focal persistent radioiodine oral uptake seen on radioiodine scans.
Purpose: The survival for children with relapsed or metastatic neuroblastoma remains poor. More effective regimens with acceptable toxicity are required to improve prognosis. Iodine-131-metaiodobenzylguanidine ((131)I-MIBG) selectively targets radiation to catecholamine-producing cells, including neuroblastoma cells.
View Article and Find Full Text PDF