Introduction: 2022 was a landmark year with two adeno-associated viral vectors (AAVs) receiving conditional marketing authorization from EMA for the treatment of persons with severe haemophilia A and severe to moderately severe haemophilia B and a third in 2024. Gene therapy is a transformative, irreversible treatment with long-lasting effects, necessitating development of new clinical pathways to ensure optimal outcomes.
Aim: To develop a consensus framework and service specification for delivery of AAV gene therapy for haemophilia in adults within the UK using the hub-and-spoke model proposed by the European Association of Haemophilia and Allied Disorders and the European Haemophilia Consortium.
Hexagonal boron nitride (h-BN) hosts pure single-photon emitters that have shown evidence of optically detected electronic spin dynamics. However, the electrical and chemical structures of these optically addressable spins are unknown, and the nature of their spin-optical interactions remains mysterious. Here, we use time-domain optical and microwave experiments to characterize a single emitter in h-BN exhibiting room temperature optically detected magnetic resonance.
View Article and Find Full Text PDFObjective: The purpose of this case study was to describe the use of chiropractic care in the treatment of obstructive sleep apnea (OSA).
Clinical Features: A 42-year-old man with obesity presented for chiropractic care. He had OSA and was seeking a way to reduce snoring.
We have developed a sensitive cryogenic second-harmonic generation microscopy to study a van der Waals antiferromagnet MnPS_{3}. We find that long-range Néel antiferromagnetic order develops from the bulk crystal down to the bilayer, while it is absent in the monolayer. Before entering the long-range antiferromagnetic ordered phase in all samples, an upturn of the second harmonic generation below 200 K indicates the formation of the short-range order and magnetoelastic coupling.
View Article and Find Full Text PDFQuantum emitters such as the diamond nitrogen-vacancy (NV) center are the basis for a wide range of quantum technologies. However, refraction and reflections at material interfaces impede photon collection, and the emitters' atomic scale necessitates the use of free space optical measurement setups that prevent packaging of quantum devices. To overcome these limitations, we design and fabricate a metasurface composed of nanoscale diamond pillars that acts as an immersion lens to collect and collimate the emission of an individual NV center.
View Article and Find Full Text PDFMicromachines (Basel)
August 2018
The diamond nitrogen-vacancy (NV) center is a leading platform for quantum information science due to its optical addressability and room-temperature spin coherence. However, measurements of the NV center's spin state typically require averaging over many cycles to overcome noise. Here, we review several approaches to improve the readout performance and highlight future avenues of research that could enable single-shot electron-spin readout at room temperature.
View Article and Find Full Text PDFTwo strains of Pseudomonas putida, Psp-LUP and Psp-SPAR, capable of growth on the quinolizidine alkaloids, lupanine and sparteine respectively, were studied here. We report the isolation of Psp-SPAR and the complete genome sequencing of both bacteria. Both were confirmed to belong to P.
View Article and Find Full Text PDFNanodiamonds containing nitrogen-vacancy (NV) centers offer a versatile platform for sensing applications spanning from nanomagnetism to in vivo monitoring of cellular processes. In many cases, however, weak optical signals and poor contrast demand long acquisition times that prevent the measurement of environmental dynamics. Here, we demonstrate the ability to perform fast, high-contrast optical measurements of charge distributions in ensembles of NV centers in nanodiamonds and use the technique to improve the spin-readout signal-to-noise ratio through spin-to-charge conversion.
View Article and Find Full Text PDFData collected in vivo is essential for advising decisions on drug screening and development and basic research, and animal models are used extensively for acquiring experimental measurements. Traditionally, collection of specimens has been invasive, stressful to animal subjects, labor intensive, time-consuming and costly, and required many animals when using small models with low fluid volumes, such as rats or mice. Utilizing automated microsampling (AMS) alone or in an integrative pharmacology approach to evaluate multiple physiological, pharmacokinetic, and pharmacodynamic endpoints simultaneously in the same animal accomplishes multiple experimental goals.
View Article and Find Full Text PDFDuring efforts to crystallize the enzyme 2,4-dihydroxyacetophenone dioxygenase (DAD) from Alcaligenes sp. 4HAP, a small number of strongly diffracting protein crystals were obtained after two years of crystal growth in one condition. The crystals diffracted synchrotron radiation to almost 1.
View Article and Find Full Text PDFA theoretical model of modulation transfer spectroscopy (MTS) that includes pump beam depletion is presented and experimentally verified with data covering visible iodine transitions at 532, 543, and 612 nm. This model is used to determine the values for pressure, interaction length, and saturation intensity that yield maximum MTS signals for frequency locking to iodine transitions. The approach is demonstrated for iodine transitions at 532, 633, and 778 nm, with the results showing that theoretically the frequency instability scales inversely to the absorption coefficient.
View Article and Find Full Text PDFJ Microbiol Methods
November 2006
Fourier transform-infrared (FT-IR) spectroscopy has become an important tool for rapid analysis of complex biological samples. The infrared absorbance spectrum could be regarded as a "fingerprint" which is characteristic of biochemical substances. In this study, Pseudomonas putida NCIMB 9869 was grown with either 3,5-xylenol or m-cresol as the sole carbon source, each inducing different metabolic pathways for m-cresol biotransformation.
View Article and Find Full Text PDFWe decided to test the hypothesis that possibly by combining a narcotic antagonist and amino-acid therapy consisting of an enkephalinase inhibitor (D-phenylalanine) and neurotransmitter precursors (L-amino- acids) to promote neuronal dopamine release might enhance compliance in methadone patients rapidly detoxified with the narcotic antagonist Trexan (Dupont, Delaware). In this regard, Thanos et al. [J.
View Article and Find Full Text PDFThis report suggests an important physiological role of a CYP in the accumulation of uroporphyrin I arising from catalytic oxidative conversion of uroporphyrinogen I to uroporphyrin I in the periplasm of Escherichia coli cultured in the presence of 5-aminolevulinic acid. A structurally competent Streptomyces griseus CYP105D1 was expressed as an engineered, exportable form in aerobically grown E. coli.
View Article and Find Full Text PDFWe have cloned, sequenced, and heterologously expressed a periplasmic cytochrome c from a lupanine-utilizing Pseudomonas putida strain. Aerobic batch cultivation of Escherichia coli TB1 harboring the cytochrome c gene placed downstream of the lac promoter in pUC9 vector resulted in significant production of the holo-cytochrome c in the periplasm ( approximately 4 mg of hemoprotein/liter of culture). The recombinant cytochrome c was purified to homogeneity and was found to be functional in accepting electrons from lupanine hydroxylase while catalyzing hydroxylation of lupanine.
View Article and Find Full Text PDFAppl Environ Microbiol
June 2003
4-ethylphenol methylenehydroxylase from Pseudomonas putida JD1 acts by dehydrogenation of its substrate to give a quinone methide, which is then hydrated to an alcohol. It was shown to be active with a range of 4-alkylphenols as substrates. 4-n-propylphenol, 4-n-butylphenol, chavicol, and 4-hydroxydiphenylmethane were hydroxylated on the methylene group next to the benzene ring and produced the corresponding chiral alcohol as the major product.
View Article and Find Full Text PDFLupanine hydroxylase catalyses the first reaction in the catabolism of the alkaloid lupanine by Pseudomonas putida. It dehydrogenates the substrate, which can then be hydrated. It is a monomeric protein of M(r) 72,000 and contains a covalently bound haem and a molecule of PQQ.
View Article and Find Full Text PDFThe gene encoding the enzyme lupanine hydroxylase was isolated by PCR using chromosomal DNA from a lupanine-utilizing Pseudomonas sp. as template and primers based on the sequences of the N- and C-termini of the purified protein. The derived sequence for the mature gene product gave a protein with an M (r) of 72256, in good agreement with the value found by SDS/PAGE of the pure enzyme, and contained the sequences of several peptides obtained after endoproteinase Lys-C digestion of the pure enzyme.
View Article and Find Full Text PDF