Publications by authors named "David Hollis"

Adult fish produce new cells throughout their central nervous system during the course of their lives and maintain a tremendous capacity to repair damaged neural tissue. Much of the focus on understanding brain repair and regeneration in adult fish has been directed at regions of the brainstem and forebrain; however, the mesencephalon (midbrain) and diencephalon have received little attention. We sought to examine differential gene expression in the midbrain/diencephalon in response to injury in the adult fish using RNA-seq.

View Article and Find Full Text PDF

Rem2 is member of the RGK (Rem, Rad, and Gem/Kir) subfamily of the Ras superfamily of GTP binding proteins known to influence Ca entry into the cell. In addition, Rem2, which is found at high levels in the vertebrate brain, is also implicated in cell proliferation and synapse formation. Though the specific, regional localization of Rem2 in the adult mammalian central nervous system has been well-described, such information is lacking in other vertebrates.

View Article and Find Full Text PDF

Micromotion around implants is commonly measured using displacement-sensor techniques. Due to the limitations of these techniques, an alternative approach (DVC-μCT) using digital volume correlation (DVC) and micro-CT (μCT) was developed in this study. The validation consisted of evaluating DVC-μCT based micromotion against known micromotions (40, 100 and 150 μm) in a simplified experiment.

View Article and Find Full Text PDF

Rem2 is a member of the RGK (Rem, Rad, and Gem/Kir) subfamily of the Ras superfamily of GTP binding proteins. In mammals, Rem2 has been found to be unique in not only its structure, but also its tissue specificity, as it is the first member to be found at high levels in neuronal tissue. Because Rem2 has previously been implicated in neuronal cell proliferation, and amphibians maintain relatively high neuronal proliferative activity as adults, we sought to isolate and acquire the full-length sequence of the rem2 gene from the brain of the bullfrog (Rana catesbeiana).

View Article and Find Full Text PDF

Introduction: In addition to hazardous conditions that are prevalent in mines, there are various physical and psychosocial risk factors that can affect mine workers' safety and health. Without due diligence to mine safety, these risk factors can affect workers' safety experience, in terms of near misses, disabling injuries and accidents experienced or witnessed by workers.

Method: This study sets out to examine the effects of physical and psychosocial risk factors on workers' safety experience in a sample of Ghanaian miners.

View Article and Find Full Text PDF

Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields.

View Article and Find Full Text PDF

REM2 is a member of the REM, RAD, and GEM/KIR (RGK) subfamily of RAS superfamily proteins and plays an important role in brain development and function. In this study, two Rem2 isoforms were isolated from the rainbow trout (Oncorhynchus mykiss). The two genes, designated O.

View Article and Find Full Text PDF

The soluble members of the three-finger protein superfamily all share a relatively simple 'three-finger' structure, yet perform radically different functions. Plethodontid modulating factor (PMF), a pheromone protein produced by the lungless salamander, Plethodon shermani, is a new and unusual member of this group. It affects female receptivity when delivered to the female's nares during courtship.

View Article and Find Full Text PDF

Type I cannabinoid receptor (CB1) is a G-protein coupled receptor with a widespread distribution in the central nervous system in mammals. In a urodele amphibian, the rough-skinned newt (Taricha granulosa), recent evidence indicates that endogenous cannabinoids (endocannabinoids) mediate behavioral responses to acute stress and electrophysiological responses to corticosterone. To identify possible sites of action for endocannabinoids, in situ hybridization using a gene and species specific cRNA probe was used to label CB1 mRNA in brains of male T.

View Article and Find Full Text PDF

Previous research suggests that considerable species-specific variation exists in the neuroanatomical distributions of arginine vasotocin (AVT) and mesotocin (MST), non-mammalian homologues of vasopressin and oxytocin. An earlier study in rough-skinned newts (Taricha granulosa) indicated that the neuroanatomical distribution of cells labeled for AVT-immunoreactivity (ir) was greater in this urodele amphibian than in any other species. It was unknown whether the widespread distribution of AVT-ir is unique to T.

View Article and Find Full Text PDF

The distribution of the neurotransmitter gamma-aminobutyric acid (GABA) is not well understood for non-mammalian vertebrates. We thus used immunocytochemistry to locate putative GABAergic cells in the brains of male bullfrogs (Rana catesbeiana) and South African clawed frogs (Xenopus laevis). GABA-immunoreactive cell bodies were broadly distributed throughout the brains of both species with similar general patterns.

View Article and Find Full Text PDF

Little is known about the properties of GABA receptors in the amphibian brain. The GABA(A) receptor is widespread in the mammalian brain, and can be specifically labeled with the receptor agonist [3H]muscimol. The binding of [3H]muscimol to membrane preparations from the brain of the bullfrog, Rana catesbeiana, was investigated in kinetic, saturation, and inhibition experiments to determine whether this species possessed a GABA(A)-like receptor.

View Article and Find Full Text PDF