Recent applications of wearable inertial measurement units (IMUs) for predicting human movement have often entailed estimating action-level (e.g., walking, running, jumping) and joint-level (e.
View Article and Find Full Text PDFThe use of wearable sensors, such as inertial measurement units (IMUs), and machine learning for human intent recognition in health-related areas has grown considerably. However, there is limited research exploring how IMU quantity and placement affect human movement intent prediction (HMIP) at the joint level. The objective of this study was to analyze various combinations of IMU input signals to maximize the machine learning prediction accuracy for multiple simple movements.
View Article and Find Full Text PDFSources of neurotoxic mercury in forests are dominated by atmospheric gaseous elemental mercury (GEM) deposition, but a dearth of direct GEM exchange measurements causes major uncertainties about processes that determine GEM sinks. Here we present three years of forest-level GEM deposition measurements in a coniferous forest and a deciduous forest in northeastern USA, along with flux partitioning into canopy and forest floor contributions. Annual GEM deposition is 13.
View Article and Find Full Text PDFNature-based Climate Solutions (NbCS) are managed alterations to ecosystems designed to increase carbon sequestration or reduce greenhouse gas emissions. While they have growing public and private support, the realizable benefits and unintended consequences of NbCS are not well understood. At regional scales where policy decisions are often made, NbCS benefits are estimated from soil and tree survey data that can miss important carbon sources and sinks within an ecosystem, and do not reveal the biophysical impacts of NbCS for local water and energy cycles.
View Article and Find Full Text PDFExperiments show that elevated atmospheric CO (eCO) often enhances plant photosynthesis and productivity, yet this effect varies substantially and may be climate sensitive. Understanding if, where and how water supply regulates CO enhancement is critical for projecting terrestrial responses to increasing atmospheric CO and climate change. Here, using data from 14 long-term ecosystem-scale CO experiments, we show that the eCO enhancement of annual aboveground net primary productivity is sensitive to annual precipitation and that this sensitivity differs between woody and grassland ecosystems.
View Article and Find Full Text PDFThe forest sector can play a significant role in climate change mitigation. We evaluated forest sector carbon trends and potential mitigation scenarios in Vermont using a systems-based modeling framework that accounts for net emissions from all forest sector components. These components comprise (1) the forest ecosystem, including land-use change, (2) harvested wood products (HWP), and (3) substitution effects associated with using renewable wood-based products and fuels in place of more emission-intensive materials and fossil fuel-based energy.
View Article and Find Full Text PDFForest resource use efficiencies (RUEs) can vary with tree age, but the nature of these trends and their underlying mechanisms are not well understood. Understanding the age dynamics of forest RUEs and their drivers is vital for assessing the trade-offs between forest functions and resource consumption, making rational management policy, and projecting ecosystem carbon dynamics. Here we used the FLUXNET2015 and AmeriFlux datasets and published literature to explore the age-dependent variability of forest light use efficiency (LUE) and inherent water use efficiency as well as their main regulatory variables in temperate regions.
View Article and Find Full Text PDFEvergreen conifer forests are the most prevalent land cover type in North America. Seasonal changes in the color of evergreen forest canopies have been documented with near-surface remote sensing, but the physiological mechanisms underlying these changes, and the implications for photosynthetic uptake, have not been fully elucidated. Here, we integrate on-the-ground phenological observations, leaf-level physiological measurements, near surface hyperspectral remote sensing and digital camera imagery, tower-based CO flux measurements, and a predictive model to simulate seasonal canopy color dynamics.
View Article and Find Full Text PDFThis study investigated the generalized effects of positive feedback (PF) versus negative feedback (NF) during training on performance and sense of agency for a reach-to-touch task with a virtual hand. Virtual reality (VR) is increasingly employed for rehabilitation after neuromuscular traumas such as stroke and spinal cord injury. However, VR methods still need to be optimized for greater effectiveness and engagement to increase rates of clinical retention.
View Article and Find Full Text PDFMultiple lines of evidence suggest that plant water-use efficiency (WUE)-the ratio of carbon assimilation to water loss-has increased in recent decades. Although rising atmospheric CO has been proposed as the principal cause, the underlying physiological mechanisms are still being debated, and implications for the global water cycle remain uncertain. Here, we addressed this gap using 30-y tree ring records of carbon and oxygen isotope measurements and basal area increment from 12 species in 8 North American mature temperate forests.
View Article and Find Full Text PDFCarbon dioxide (CO), methane (CH), and nitrous oxide (NO) are the greenhouse gases largely responsible for anthropogenic climate change. Natural plant and microbial metabolic processes play a major role in the global atmospheric budget of each. We have been studying ecosystem-atmosphere trace gas exchange at a sub-boreal forest in the northeastern United States for over two decades.
View Article and Find Full Text PDFIn our recent study in Global Change Biology (Li et al., ), we examined the relationship between solar-induced chlorophyll fluorescence (SIF) measured from the Orbiting Carbon Observatory-2 (OCO-2) and gross primary productivity (GPP) derived from eddy covariance flux towers across the globe, and we discovered that there is a nearly universal relationship between SIF and GPP across a wide variety of biomes. This finding reveals the tremendous potential of SIF for accurately mapping terrestrial photosynthesis globally.
View Article and Find Full Text PDFThere are few whole-canopy or ecosystem scale assessments of the interplay between canopy temperature and photosynthesis across both spatial and temporal scales. The stable oxygen isotope ratio (δO) of plant cellulose can be used to resolve a photosynthesis-weighted estimate of canopy temperature, but the method requires independent confirmation. We compare isotope-resolved canopy temperatures derived from multi-year homogenization of tree cellulose δO to canopy-air temperatures weighted by gross primary productivity (GPP) at multiple sites, ranging from warm temperate to boreal and subalpine forests.
View Article and Find Full Text PDFSolar-induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite-observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.
View Article and Find Full Text PDFA range of environmental factors regulate tree growth; however, climate is generally thought to most strongly influence year-to-year variability in growth. Numerous dendrochronological (tree-ring) studies have identified climate factors that influence year-to-year variability in growth for given tree species and location. However, traditional dendrochronology methods have limitations that prevent them from adequately assessing stand-level (as opposed to species-level) growth.
View Article and Find Full Text PDFIn evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying "photosynthetic phenology" from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a "chlorophyll/carotenoid index" (CCI) that tracks evergreen photosynthesis at multiple spatial scales. When calculated from NASA's Moderate Resolution Imaging Spectroradiometer satellite sensor, the CCI closely follows the seasonal patterns of daily gross primary productivity of evergreen conifer stands measured by eddy covariance.
View Article and Find Full Text PDFEcosystem models often perform poorly in reproducing interannual variability in carbon and water fluxes, resulting in considerable uncertainty when estimating the land-carbon sink. While many aggregated variables (growing season length, seasonal precipitation, or temperature) have been suggested as predictors for interannual variability in carbon fluxes, their explanatory power is limited and uncertainties remain as to their relative contributions. Recent results show that the annual count of hours where evapotranspiration (ET) is larger than its 95th percentile is strongly correlated with the annual variability of ET and gross primary production (GPP) in an ecosystem model.
View Article and Find Full Text PDFThe proliferation of digital cameras co-located with eddy covariance instrumentation provides new opportunities to better understand the relationship between canopy phenology and the seasonality of canopy photosynthesis. In this paper we analyze the abilities and limitations of canopy color metrics measured by digital repeat photography to track seasonal canopy development and photosynthesis, determine phenological transition dates, and estimate intra-annual and interannual variability in canopy photosynthesis. We used 59 site-years of camera imagery and net ecosystem exchange measurements from 17 towers spanning three plant functional types (deciduous broadleaf forest, evergreen needleleaf forest, and grassland/crops) to derive color indices and estimate gross primary productivity (GPP).
View Article and Find Full Text PDFTerrestrial plants remove CO2 from the atmosphere through photosynthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct, long-term measurements of whole-ecosystem carbon and water exchange.
View Article and Find Full Text PDFThe mutations P56S and T46I in the gene encoding vesicle-associated membrane protein-associated protein B/C (VAPB) cause ALS8, a familial form of amyotrophic lateral sclerosis (ALS). Overexpression of mutant forms of VAPB leads to cytosolic aggregates, suggesting a gain of function of the mutant protein. However, recent work suggested that the loss of VAPB function could be the major mechanism leading to ALS8.
View Article and Find Full Text PDFNonstructural carbohydrate reserves support tree metabolism and growth when current photosynthates are insufficient, offering resilience in times of stress. We monitored stemwood nonstructural carbohydrate (starch and sugars) concentrations of the dominant tree species at three sites in the northeastern United States. We estimated the mean age of the starch and sugars in a subset of trees using the radiocarbon ((14) C) bomb spike.
View Article and Find Full Text PDF• It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms.
View Article and Find Full Text PDF